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1 |Introduction    

Data privacy is a discipline intended to protect data against improper or unauthorized access and theft [1]. It 

focuses on how to properly store, access, retain, and secure sensitive data. It also protects data from any 

alteration, so it maintains data stability and immutability. It is not only limited to the proper handling of 

personal data such as names, addresses, credit card numbers, and social security numbers but also other 

valuable data such as financial data, personal health information, and intellectual property. It can be applied 

to the data of individuals and organizations [2, 3]. 

Machine learning (ML) plays an important role for increasing productivity [4-6]. ML is increasingly used in 

many domains, such as healthcare [7], bioinformatics [8], agriculture [7], finance [9], manufacturing [9], 

natural language processing [10], and computer vision [11]. For ML to achieve effective results, the quality 
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Machine learning privacy preservation is essential because it defends against misuse and illegal access to sensitive 

personal data including financial information, medical records, and behavioral patterns. Centralizing data in one 

place is necessary for traditional machine learning techniques, which poses serious privacy problems. Federated 

learning becomes an innovative approach in this situation. With federated learning, the model comes to the data 

rather than the other way around, radically altering the training process for machine learning systems. Individual 

devices or organizations where the data is naturally located are used for the training process rather than a central 

server. Each participant trains the model using local data, and only model updates are returned to the global 

model for updating. Raw data never leaves its original place, hence there is a far lower chance of data breaches 

during transfer. This article proposes a systematic review of federated learning with privacy preservation for 

intrusion detection. The three chosen online libraries of IEEE Xplorer, Scopus, and Web of Science are 

searched. Each database has its corresponding search query. The search is conducted to include all papers 

published since 2016 on computer science research area. The search results contain 220 papers from the different 

search engines. After removing duplicated papers, the search results are reduced to 131. Inclusion and exclusion 

criteria are then used to filter the search results. After applying the criteria of inclusion and exclusion, only 32 

papers are approved. 
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of training data should be excellent, which depends on data size and data correctness. Large-scale datasets 

and perfect data has vastly improved and achieved excellent ML performance [12]. In order to obtain such 

excellent-quality data, many organizations work cooperatively, so privacy must be preserved. 

Although ML achieves a great success rate, it can not be used in all domains due to its challenges [13, 14]. 

In such domains, the participants are more worried about the privacy of data as the data is stored and 

analyzed on the centralized server [15]. Federated learning (FL) represents the recent development in 

artificial intelligence. FL overcomes the ML challenges by applying the concept of decentralized data which 

in turn achieving and preserving the privacy of data. 

In 2016, FL was initially presented by Google [16, 17]. FL is a decentralized method of ML. It works by 

enabling different devices or machines to train and learn a collaborative model without disclosing data with 

the centralized server [18]. It can be used in many areas including cybersecurity, healthcare, vehicle 

communications, and mobile and wireless networking [19]. It allows continual learning on client devices and 

ensuring that client data does not leave their devices. 

FL provides important benefits over traditional ML methods. Unlike classical ML, FL provides data privacy 

and security by remaining data localized and performing training process on the client machines, not the 

centralized server [20]. FL ensures privacy as the data is stored and trained locally on end user devices such 

as mobile device or edge computing [21]. It achieves hardware efficiency by utilizing less complex hardware, 

as it does not require one central server to train and analyze data [22]. It also offers data diversity by 

granting access to heterogeneous datasets and enables real-time continual learning as client data is used to 

constantly enhance FL models without requiring the combination of data for continual ML [23]. 

FL can address privacy issues, improve scalability, lower latency, and enhance reliability [24]. In this work, 

we provide a systematic review to address privacy-preserving approaches and its importance to maintain 

and protect the data of users and organizations. We also identify FL concept along with its techniques that 

can be used to ensure data privacy. We systematically determine existing studies addressing privacy-

preserving FL methods for malicious behavior detection. The contributions can be summarized as:  

1. Identify the concept of privacy-preserving along with its importance, and applications. 

2. Point out the privacy-preserving ML approaches. 

3. Identify the foundations of FL and its motivations. 

4. Identify the role of FL in preserving privacy. 

5. Identify the applications of FL especially for preserving privacy. 

6. Determine the most relevant techniques of  FL used for achieving data privacy. 

The rest of this study is organized as follows. Background of privacy preservation and FL are presented in 

Section 2. Section 3 contains related wok. Section 4 includes research methodology. Section 5 presents 

results. Conclusion is discussed in Section 6. 

2 |Background 

2.1 |Privacy Preservation 

Due to the internet-centric world, the data privacy plays an important role in our life than ever before. It is 

critical to protect data such as users’accounts and assets from attackers. ML has a crucial role to our day-

to-day existence. It is increasingly used in many applications from various domains starting from the 

detection of malware to new movies recommendation [25]. Some of these applications require sensitive 

personals’  or organizations’ data.  
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In traditional ML, the data is stored and trained on a centralized server. Centralized ML models require the 

data of individuals or organizations including sensitive data to be uploaded to the server in plaintext or clear 

format to extract patterns and build ML models, increasing the privacy and security risks [26, 27]. The 

performance of ML depends on two requirements. Such requirements are the training data volume and the 

computational resources [28-30].  

In order to achieve excellent and acceptable results of ML, a significant amount of training data and 

powerful computer capabilities must be used for producing high privacy issues due to the possible threats, 

risks and dangers of private data leaks. ML models are also threatened by adversarial attacks including 

attacks that can infer properties, attributes, or membership [31]. Many ML applications require data from 

multiple input parties. The data is stored on the central server for being trained and tested.  

There is a growing need for utilizing privacy preservation methods for ML data to achieve the privacy of 

data. Figure 1 shows different privacy-preserving approaches. Cryptographic approaches and perturbation 

techniques or differentiallyprivate data release represent the main privacy-preserving ML techniques [25].  

 
Figure 1. Privacy-preserving ML approaches. 

 
Cryptographic approaches concentrate on performing ML training and testing on encrypted data. By 

utilizing these approaches, the data is stored on the central server in an encrypted form for being trained 

and tested. The Input parties don’t have to stay online. The most popular privacy-preserving 

cryptographic methods include secure processors, secret sharing, garbled circuits, and homomorphic 

encryption (HE). [25].  

HE is an approach in which the computations can be carried out on encrypted data [32]. It allows any third 

party to operate on the ciphertext data without needing to decrypt it in advance [33]. The encrypted result 

when decrypted to its original form matches the computation result carried on the clear or plaintext data 

[34-36]. The public key encryption technique (RSA) developed by Rivest, Shamir, and Adleman [37] is the 

first public-key encryption scheme applying HE property. RSA supports only multiplication operations. 

Goldwasser-Macali(GM) [38, 39] and Paillier [40] represent other types of of HE.  
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The three main types of HE are fully HE (FHE), somewhat HE (SHE), and Partially HE (PHE) [33]. PHE 

can support either multiplication or addition, SHE permits both operations of addition and multiplication 

but for a limited number, and FHE is the most flexible type of encryption since it permits infinite 

operations on encrypted data  [33, 41-43]. There are many studies addressing privacy preservation using HE 

such as [44-47].  

In the 1980s, Yao developed the garbled circuit [48]. This generic method is employed to protect two-party 

computation for participants who are not entirely dishonest. [49]. It can be combined with HE by some ML 

privacy-preserving approaches such as [50]. There are multiple studies utilizing garbled circuit such as [51-

53]. 

Secret Sharing is one of cryptographic approaches used for achieving privacy preservation. This technique is 

used to distribute a secret between multiple parties. Every participating party holds a “share” of the 

distributing secret. When the shares are merged, the secret can be rebuilt, but individual shares are useless 

on their own[25]. In case of using secret sharing with threshold, there is no need for all the “shares” to 

reconstruct the secret [54, 55]. There are various studies utilizing secret sharing such as [56-58]. 

Secure processor is another type of cryptographic method used to achieve data privacy. The main idea 

behind this method is to collaborate multiple data owners to perform ML tasks using SGX-enabled data 

center. An adversary cannot control The computation-related SGX-processors [25]. [59, 60] utilize secure 

processor.  

Perturbation Approaches include differential privacy (DP), local differential privacy (LDP) and 

dimensionality reduction (DP) techniques. DP is an important technique for data privacy. It was first 

proposed by [61]. It is useful and can be applied in many applications due to several properties such as 

composability, the ability to deal with large datasets, group privacy, and the Robustness of side information.  

In order to safeguard data with no significant alteration, DP involves adding random noise to collected data. 

Laplace and Gaussian are common noise distributions that have varying effects on data utility and privacy 

[62]. The attacker cannot benefit from the acquired personal data because it is useless and does not include 

the person’s record from the dataset. [63-65] address privacy preservation using DP.  

LDP is considered as strong tool for privacy. In recent years, it has been widely adopted and applied in the 

real world by several organizations, including Google, Apple and Microsoft [66]. It provides much stronger 

data privacy protection by enabling users to locally perturb their own data without the need for the third 

trusted party. [67, 68] utilize LDP.  

DR is a technique used for privacy preservation. It was proposed by [69]. In order to achieve data privacy, 

the data is perturbed by transferring it to a hyperplane of lesser dimensions. It applies lossy transformation. 

In such transformations, it is impossible to retrieve the exact original data from the reduced dimension data 

version, so it enhances privacy [25]. [70-72] utilize DR.  

Privacy-preserving ML is increasingly being used in many areas. It can be used for cloud computing, 

Internet of Things (IoT), healthcare, and intrusion detection. [73-77] address privacy-preserving ML in 

cloud computing. [78-82] discuss privacy-preserving ML in IoT. [83-85] address privacy preservation in 

healthcare. [86] address privacy-preserving ML in electric vehicles. [87-89] address privacy-preserving ML 

for intrusion detection. 

     2.2| Federated Learning 

Google proposed the concept of FL for the first time in 2016 [16, 17, 90]. The main idea is to build 

decentralized models of ML. Instead of storing data on a single large server, a dataset is distributed across 

different devices, which in turn prevents data leakage and maintains data privacy [91, 92]. The FL process is 

iterative, and with each iteration, the global model on the server—the basic machine learning model—is 
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enhanced. Figure 2 depicts FL diagram. In general, FL is composed of three major general steps, model 

selection, local training, and local models aggregation [93]. 

In model selection step, global model which represents centralized ML model is distributed to every client. 

To enhance efficiency, the global model can be pretrained with initial parameters on the central server 

before sharing with clients [94, 95]. In local training step, the global model is then trained locally at each 

client participating on FL process using its own individual data [96]. In local models aggregation step, the 

model updates are transmitted to the server to perform aggregation after local training step [97]. The global 

model is then updated by using the updated parameters and distributed to all the clients for starting a new 

iteration.   

One of the essential properties of FL is privacy. Secure Multiparty Computation (SMC), DP, and HE are 

the privacy techniques used for FL [98]. SMC includes multiple parties; only its input and output are known 

to each party. With SMC, several parties can calculate a function using their inputs while preserving the 

privacy of those inputs [99]. In order to guarantee complete zero knowledge, it provides security proof by 

using well-defined simulation. [100, 101] adopt SMC with FL.  

DP is the most used method because of its robust information theoretic guarantees, ease of usage in 

algorithms, and comparatively little system overhead [102]. DP is a nature approach used to prevent the 

data leakage using the addition of artificial noises. The challenge is how to choose the appropriate level of 

noise which will influence the FL process convergence rate and the privacy guarantee of clients [103]. [104-

107] adopt DP along with FL. 

 
Figure 2. FL diagram. 

The concept of HE is proposed by [108] for bank applications. Applying ML while exchanging parameters 

under the encryption method can help preserve the privacy of user data. There is little possibility of the data 

leakage as both the model and the data are not sent. [109-112] adopt HE along with FL.  

There are three types of FL: federated transfer learning, vertical FL, and horizontal FL [98]. In horizontal 

FL, the data may have comparable feature spaces but differ greatly in sample spaces. The feature dimension 

of the data is the same. One illustration of horizontal FL is the federated model for Android smartphones 

[16]. 
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If the data is divided vertically based on feature dimensions, vertical FL is appropriate. The data differs in 

feature space. The SecureBoost framework [113] is an illustration of vertical FL. The data in federated 

transfer learning does not share feature space or sample space. Thus, the major challenge in this scenario is 

the data labels lack with poor data quality. In this architecture, the knowledge can be moved from one 

domain to another domain to produce better learning results [114]. [18, 98, 115, 116] address the 

categorization of FL. 

FL is used in many applications. It can be used in industry engineering or computer science applications 

[115]. Mobile devices applications, Wireless communication, healthcare applications, and industrial 

engineering applications are some of FL applications. FL can also be used for querying multiparty database 

without exposing the data. [98, 115] address the applications of FL. [117, 118] represent mobile devices FL 

applications. [119, 120] represent FL applications in wireless communication. [121, 122] are examples of FL 

applications in industrial engineering. [123, 124] are examples of FL applications in healthcare. 

3 |Related Work    

This section addresses the most related studies to privacy-preserving FL for intrusion detection. Table 1 

lists the related studies along with their publication year, type, and source. The related studies include 

journals’ and conferences’ reviews, systematics, and surveys since 2016 in computer science research area. 

The search process is done in June 2022. The search is performed on three digital libraries; IEEE Xplorer, 

Web of Science, and Scopus. Each library has its own search query. Table 2 shows search term strings per 

database.  

According to Table 1, there are ten studies talking about privacy-preserving FL in general, nine studies 

concentrate on IoT domain, two studies on the communication domain, and two other studies on the 

medicine domain. 

3.1 |Generic Domain 

The first ten studies in Table 1 are on general domain. The authors of [125] proposed a survey on DP 

mechanisms designed to ensure the privacy of users in the field of deep learning and FL. Their analysis is 

based on three factors; accuracy, communication cost, and computational complexity. The analysis 

demonstrated the gap in DP between accuracy, robustness, theory, and implementation. The analysis also 

resulted in many future directions to track privacy leaks while achieving a high accuracy. 

Table 1. Related work studies. 

Paper Year Type Publisher 

[126] 2022 C IEEE 

[127] 2021 C IEEE 

[128] 2022 J IEEE 

[129] 2022 J IEEE 

[130] 2021 J IEEE 

[131] 2022 J IEEE 

[132] 2021 J IEEE 

[133] 2020 J IEEE 

[125] 2022 J IEEE 

[134] 2021 J IEEE 

[135] 2017 C IEEE 

[136] 2021 C IEEE 

[137] 2021 J IEEE 

[138] 2021 J IEEE 
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Table 2. Related work search query per database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The authors of [134] presented a survey on applications, challenges, and main design factors of FL 

technology. According to this survey, FL has four design aspects, four core challenges, and four application 

areas. FL architectures, aggregation, personalization strategies, and data partitioning are examples of design 

elements. Communication cost, privacy and heterogeneity of systems, and statistical are the challenges of 

FL. Healthcare, Industrial engineering, mobile devices, IoT, and edge devices are the areas of FL 

application. 

3.2 |Internet of Things Domain 

[135-143] concentrated on IoT domain. In [135], the authors investigated the challenges of                                            

privacy and security in IoT. The privacy and security concerns in IoT systems include IoT devise storage, 

IoT web interfaces, IoT network services, IoT cloud connectivity, IoT software updates, and              

Industrial IoT. For example, cross website scripting and SQL injection are the most important security 

threats in IoT systems that may affect web interfaces. The privacy concerns of IoT cloud connectivity 

includes two issues; secure communications and access rights for IoT-Cloud. They also presented existing 

approaches to preserve security privacy in IoT environment such as rigorous testing, disabling universal plug 

and play, and learning automata based solution, and distributed denial of service DDOS alert mechanisms. 

 The authors of [138] presented a comprehensive analysis on FL's application in IoT domain. They also 

illustrated the role of FL in many critical IoT services , including mobile crowdsensing, attack detection, 

localization, data offloading and caching, IoT privacy and security, and IoT data sharing. They also 

discussed the potential of FL in various IoT applications like smart transportation, smart healthcare, smart 

[139] 2020 J IEEE 

[140] 2022 J IEEE 

[141] 2019 J IEEE 

[142] 2020 J IEEE 

[143] 2022 J Elsevier 

[144] 2021 J IEEE 

[145] 2020 J IEEE 

[146] 2022 J Wiley Online Library 

[147] 2022 J IEEE 

Database Query 

IEEE Xplorer 

((”Abstract”:Privacy preserving) OR (”Abstract”:Data Privacy)) AND 

((”Full Text Only”:Malware Detection) OR (”Full Text 

Only”:Intrusion Detection) OR (”Full Text Only”:Malicious Behavior 

Detection)) AND ((”Abstract”:Distributed ML) OR 

(”Abstract”:Distributed Learning) OR (”Abstract”:Federated 

Learning)) AND ((”Document Title”:review) OR (”Document 

Title”:systematic) OR (”Document Title”:”survey)) 

WoS 

((AB=(Privacy preserving) OR AB=(Data Privacy)) AND 

(AB=(Detection) OR AB=(Malware Detection) OR AB=(Intrusion 

Detection) OR AB=(Malicious Behavior Detection)) AND 

(AB=(Distributed ML) OR AB=(Distributed Learning) OR 

AB=(Federated Learning) OR AB=(Federated Machine Learning))) 

AND (TI=(review) OR TI=(systematic) OR TI=(survey)) 

Scopus 

((ABS(Privacy preserving) OR ABS(Data Privacy)) AND 

(ABS(Detection) OR ABS(Malware Detection) OR ABS(Intrusion 

Detection) OR ABS(Malicious Behavior Detection)) AND 

(ABS(Distributed ML) OR ABS(Distributed Learning) OR 

ABS(Federated Learning) OR ABS(Federated Machine Learning))) 

AND (TITLE(review) OR TITLE(systematic) OR TITLE(survey)) 
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cities, smart industry, and unmanned aerial vehicles. They also illustrated several challenges include FL 

security and privacy concerns, FL-IoT communication and learning convergence issues, FL resource 

management, FL deployment of AI functions on IoT sensors, and FLIoT standard specifications. 

3.3 |Communication Domain  

[144, 145] concentrated on communication domain. The authors of [145] proposed a review of the use of 

blockchain in 5G networks and beyond networks. They discussed the benefits of integrating blockchain into 

the 5G networks. They introduced the classification of blockchain applications for 5G networks. The 

taxonomy includes communication management, network management, computing management, and 

services. For example, the taxonomy for network management includes NFV , SDN, and network slicing. 

The taxonomy for computing management includes MEC, content caching, distributed computing, data 

storage, and cloud computing. 

D2D, resource allocation, spectrum sharing, infrastructure sharing, and infrastructure management are all 

included in the communication management taxonomy. The taxonomy for privacy and security includes 

authentication, fraud management, identity as a service, data privacy, and access control. The taxonomy for 

services includes billing & payment, roaming, content distribution, and digital rights. They applied layered 

approach in order to categorize the applications of blockchain in 5G ecosystems. They gave an overview of 

the proof of concept and field tests for the use of blockchain in 5G network. 

3.4 |Medicine Domain  

[146, 147] concentrated on medicine domain. The authors of [104] proposed a comprehensive review for 

the role of FL in the detection of COVID-19. They used chest X-ray (CXR) data sets for image. They 

presented a simple model using FL for identifying COVID-19.  In order to demonstrate FL applicability in 

tackling the research issues of healthcare domain, they also reviewed previously published FL applications 

for COVID-19 research area. 

The authors of [147] provided guidance for implementing ML based medical systems and applications. 

They proposed a survey of practical and technical challenges for implementing ML based medical systems. 

They discussed existing regulations facing ML in medical domain. These regulations include safety, 

reliability, robustness, security, privacy, explainability, transparency, and nondiscrimination. they also 

provided solutions to overcome medical ML challenges. FL along with large and representative datasets is 

one of the solution approaches. The other solutions involve domain knowledge careful exploitation, 

algorithmic impact evaluations, and the use of models for comprehensive out-of-distribution testing and 

verification. 

4 |Research Methodology 

     4.1|Objectives 

Using centralized machine learning in extremely sensitive systems, like healthcare systems, financial systems, 

and industrial systems, threatens individuals’ and organizations’ data and makes it vulnerable to attacks. This 

study aims to identify the needs for data privacy and its importance by identifying the problems and threats 

targeting centralized/classical ML systems. Moreover, the study also identifies privacy-preserving techniques 

used to protect individuals or organizations’ data from any unauthorized or illegal action. 

To sum up, the following is a formulation of the study's goals: 

• O1: Identify the problems and threats targeting individuals and organizations implementing centralized 

ML. (Identify the need for privacy preservation or data privacy) 

• O2: Identify privacy-preserving techniques used to assure ML systems’ security. 

• O3: Identify privacy-preserving ML domains. 
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• O4: Identify the importance of FL for the privacy of data. 

• O5: Identify FL techniques used for data privacy. 

• O6: Identify privacy-preserving FL applications. 

Table 3. Research questions, motivations, and relevant objectives. 

 

      

 

 

 

 

      

 

     4.2|Research Questions 

The purpose of this work is to address and explain privacy-preserving techniques and how they can be 

adopted with FL for malicious behavior detection. Based on this purpose, research questions are formulated 

following the guidelines of [148]. There are six main research questions for this study. Research questions 

are provided in Table 3, along with the motivation behind them and any associated goals. The search term is 

intended to be simple and generic as possible. It is created using search terms categorized into three groups; 

privacy preserving, intrusion detection, and distributed learning. For retrieving relevant papers, the 

guidelines of [148] are followed. Search queries are performed on the following three adopted online 

databases:  

• IEEE Xplorer. 

• Scopus. 

• Web of Science. 

The search is conducted to include all papers published since 2016 on computer science research area. 

Table 4 represents search query for each database. 

 

 

N 
Research 

Question 
Main Motivation  Objectives 

RQ1 

What are 

problems and 

threats of 

classical ML? 

This research question identifies the importance and the need for privacy 

preservation or data privacy. 
O1 

RQ2 

What are 

existing 

approaches 

used for 

privacy 

preservation? 

This research question gives an overview of current  privacy-preserving methods. O2 

RQ3 

What are 

privacy-

preserving ML 

domains? 

 

This research question gives an overview of current privacy-preserving domains. 

 

 

O3 

RQ4 

What is the 

role of FL in 

preserving 

privacy? 

This research question addresses the importance of FL for improving the privacy of 

data. 
O4 

RQ5 

What are FL 

techniques 

used for 

preserving 

privacy? 

This research question presents an overview of existing FL techniques used for data 

privacy. 
O5 

RQ6 

What are 

privacy-

preserving FL 

applications? 

This research question addresses an overview of FL based  applications used for 

privacy preservation. 
O6 
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Table 4. Search term strings per database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      4.3|Study Selection 

 In this study, two screening stages were applied to generate the set of retrieved papers using search queries 

on the three selected databases of Scopus, IEEE Xplorer, and Web of Science. First stage represents the 

screening of titles and abstracts. In this stage, the papers’ titles and abstracts are examined to determine 

relevance. Second stage represents full text screening. In this stage, the papers’ full text is checked to 

determine if they achieve the inclusion criteria specified in Table 5. The authors screen the list of all papers 

separately. Their decisions are exchanged. The conflicts are also addressed and solved.  

Table 5. Inclusion criteria. 

 

 

 

 

 

 

 

 

 

Database Keyword Searches 

IEEE 

Xplorer 

((”Abstract”:”Privacy preserving” OR 

”Abstract”:”Data Privacy”) AND 

(”Abstract”:”Detection” OR ”Abstract”:”Malware 

Detection” OR 

”Abstract”:”Intrusion Detection” OR 

”Abstract”:”Malicious Behavior Detection”) 

AND (”Abstract”:”Distributed ML” OR 

”Abstract”:”Distributed Learning” 

OR ”Abstract”:”Federated Learning” OR 

”Abstract”:”Federated ML”) ) 

NOT (”Abstract”:”review” OR 

”Abstract”:”systematic” OR ”Abstract”:”survey”) 

Scopus 

((ABS(Privacy preserving) OR ABS(Data Privacy)) 

AND 

(ABS(Detection) OR ABS(Malware Detection) OR 

ABS(Intrusion Detection) 

OR ABS(Malicious Behavior Detection)) AND 

(ABS(Distributed ML) 

OR ABS(Distributed Learning) OR ABS(Federated 

Learning) OR ABS(Federated ML))) 

AND NOT (ABS(review) OR ABS(systematic) OR 

ABS(survey)) 

Web of 

Science 

((AB=(Privacy preserving) OR AB=(Data Privacy)) 

AND (AB=(Detection) 

OR AB=(Malware Detection) OR AB=(Intrusion 

Detection) OR 

AB=(Malicious Behavior Detection)) AND 

(AB=(Distributed ML) 

OR AB=(Distributed Learning) OR 

AB=(Federated Learning) OR 

AB=(Federated ML))) NOT (AB=(review) OR 

AB=(systematic) OR AB=(survey)) 

ID Criteria 

I1 Papers published since 2016. 

I2 Journals and early access papers. 

I3 Full-length and complete published papers. 

I4 Papers written in english. 

I5 Papers aimed at privacy-preserving ML methods for 

malicious behavior detection. 

I6 Papers applying federated ML. 

I7 Papers applying technology to enhance and improve privacy. 

I8 Experimental results ensure privacy. 
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Table 6. Exclusion criteria. 

 

 

 

 

 

 

 

 

 

     4.4|Inclusion and Exclusion Criteria 

The amount of papers produces by searches using specified search queries for the three selected databases; 

IEEE Xplore, Scopus, and Web of Science, is decreased by specifying and applying a set of criteria for both 

inclusion and exclusion. Only journals and early access papers are included in this study. All papers 

published since 2016 are included in the search. The starting year 2016 is adopted since FL is first 

introduced by google in 2016 [16, 17]. Only English written papers addressing privacy preservation and FL 

for malicious behavior detection are included. Table 5 lists all of the adopted inclusion criteria, whereas 

Table 6 lists all of the exclusion criteria. 

     4.5|Data Extraction Process   

In this study, the data extraction process is performed by following the guidelines of [116]. Table 7 

represents the designed data extraction form. Each paper is formed by using its corresponding metadata like 

publication source and publication year. A set of necessary information is also extracted for analysis. 

Table 7. Data extraction form. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ID Criteria 

E1 
Papers applying only federated ML without editing or 

enhancing privacy. 

E2 Papers with experimental results do not test privacy. 

E3 Proceeding papers. 

E4 Review papers. 

E5 Survey papers. 

E6 Systematic review papers. 

E7 Tutorial papers and editorials. 

E8 Books or book chapters. 

E9 Conferences. 

E10 Magazines. 

E11 Incomplete published papers (papers without full text 

available). 

E12 Non-english studies. 

ID 
Data Extraction 

Item 
Description RQ 

D1 Paper ID First author name + year  

D2 Year The publication year  

D3 Source The publication source  

D4 Threads ML threats and the importance of privacy preservation RQ1 

D5 Approaches Privacy-preserving approaches RQ2 

D6 Domains Privacy-preserving domains RQ3 

D7 Role FL role in preserving privacy RQ4 

D8 Techniques FL techniques RQ5 

D9 Applications Privacy-preserving FL applications RQ6 
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Table 8. Number of studies that each database returned. 

 

 

 

 

 

     4.6|Data Synthesis 

Table 7 illustrates the mapping of research questions to data extraction. RQ1 is mapped to data item D4 

which represents ML threats. RQ2 is mapped to data item D5 which represents privacy-preserving 

approaches. RQ3 is mapped to data item D6 which represents privacy-preserving domains. RQ4 is mapped 

to data item D7 which represents the role of FL in preserving privacy. RQ5 is mapped to data item D8 

which represents FL techniques. RQ6 is mapped to data item D9 which represents privacy-preserving FL 

applications.  

  5|Results 

     5.1|Overview of Selected Studies 

The search process is carried out in June 2022. The process yields 32 unique publications that have been 

published since 2016. The set of chosen digital libraries—IEEE Xplorer, Scopus, and Web of Science—are 

subjected to the created search query. Table 8 shows the amount of retrived papers from every library after 

applying conditions. 

The search process includes three conditions. The first condition represents published papers since 2016. 

The second condition represents published papers in computer science research area. The final condition 

represents only journals and early accesses. The mentioned conditions are used to eliminate the number of 

papers that the search engines have retrieved. The set of 220 returned publications from various search 

engines are collected. The duplicate publications are then eliminated. This brings the total number of papers 

down to 131. Only 32 papers are approved after checking the criteria of inclusion and exclusion. Figure 3 

depicts the entire overall selection process.   

Database Search Results 

IEEE Xplorer 34 

Scopus 117 

Web of Science 69 

Total 220 
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Figure 3. Selection process. 

The distribution of chosen papers by source and year of publication is shown in Figure 4. As shown, the 

year of 2016, 2017, and 2019 has no publications matching the inclusion criteria. The interest into privacy-

preserving FL starts getting more attentions since 2020. Scopus has the maximum number of publications 

matching the criteria of inclusion. 

Table 9 displays the full list of chosen papers matching the inclusion criteria along with their corresponding 

year and publisher. 

Table 9. List of selected studies 

ID Cite Year Publisher 

P1 [149] 2022 Hindawi 

P2 [150] 2022 Wiley Online Library 

P3 [151] 2021 Elsevier 

P4 [152] 2018 IEEE 

P5 [153] 2020 IEEE 

P6 [154] 2021 Hindawi 

P7 [155] 2021 Wiley Online Library 

P8 [156] 2022 Elsevier 

P9 [157] 2021 IEEE 

P10 [158] 2021 Elsevier 

P11 [159] 2021 IEEE 



Privacy-Preserving Federated Learning in Network Intrusion Detection: A Systematic Literature Review 

 

02    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Distribution of selected papers by library and year. 

     5.2|Importance of Privacy Preservation (RQ1) 

 For training model, Conventional ML techniques require the gathering and centralization of raw user data 

on servers, presenting serious privacy problems. Sensitive information is susceptible to misuse, data 

breaches, and illegal access as it must be uploaded to central servers. Furthermore, conventional ML systems 

P12 [160] 2020 IEEE 

P13 [161] 2022 Elsevier 

P14 [162] 2021 IEEE 

P15 [51] 2020 IEEE 

P16 [163] 2022 Elsevier 

P17 [164] 2021 IEEE 

P18 [165] 2021 Hindawi 

P19 [166] 2020 IEEE 

P20 [167] 2022 IEEE 

P21 [168] 2022 IEEE 

P22 [169] 2022 IEEE 

P23 [109] 2021 IEEE 

P24 [170] 2021 IEEE 

P25 [171] 2022 IEEE 

P26 [172] 2022 IEEE 

P27 [173] 2021 IEEE 

P28 [174] 2021 IEEE 

P29 [111] 2021 IEEE 

P30 
[175] 2020 

Taiwan Academic Network Management 

Committee 

P31 [176] 2022 Multidisciplinary Digital Publishing Institute 

P32 [177] 2021 IEEE 
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have the ability to inadvertently memorize and expose private information from their training data, which 

could reveal sensitive information about specific users. The demand for sophisticated privacy-preserving 

methods that can safeguard user data while facilitating efficient ML has been motivated by these privacy 

issues. Consequently, techniques like FL have been developed that enable training of models without 

requiring raw data to leave user devices.  

     5.3|Privacy-Preserving Approaches (RQ2)  

Privacy-preserving ML approaches have two main categories: cryptographic approaches and perturbation 

approaches. HE, secret sharing, garbled circuits, and secure processors represent cryptographic approaches 

while DP, LDP, and DR techniques represent perturbation approaches.   

     5.4|Privacy-Preserving Domains (RQ3) 

Privacy-preserving ML is increasingly being used in many areas. It can be used for cloud computing, IoT, 

healthcare, and intrusion detection. 

     5.5|FL Role in Privacy Preservation (RQ4) 

Classical ML depends on storing the users’ or organizations’ data on a centralized server for the purpose of 

model training and updating so its vulnerable to attacks not only by the server owners but also by any cyber 

attacks. FL is a new trend of ML which can overcome the problems of traditional ML and achieve the 

privacy of data. It implements traditional ML models with privacy features. Its a distributed ML models. 

Rather than traditional ML, FL doesn’t require the data and ML model to be stored on a centralized server. 

The data will remain on its local users, and the model will be sent to the data. The core concept of FL is to 

deliver the model to the data rather than the other way around. so FL preserves privacy. 

    5.6|FL Techniques for Privacy Preservation (RQ5) 

SMC, DP, and HE are the most used FL privacy-preserving techniques. From our point of view, DP is the 

most used privacy-preserving FL technique for intrusion detection.   

5.7|Privacy-Preserving FL Applications (RQ6) 
There are many applications for privacy-preserving FL, which are used in general domains, IoT domain, 

communication domain, medicine domain, mobile domain, and financial domain.  

6|Conclusion 

This study provides a systematic review of privacy-preserving distributed ML for malicious behavior 

detection. search queries are performed on the three selected online databases of IEEE Xplorer, Scopus, 

and Web of Science. Each database has its corresponding search query. The search is performed to include 

all papers published since 2016 on computer science research area. The set of 220 returned papers from the 

various search engines are collected. After removing duplicated papers, the number of papers are reduced to 

131. Only 32 papers are approved after checking the criteria of inclusion and exclusion. The interest into 

privacy-preserving FL starts getting more attentions since 2020 as there is no publications matching the 

inclusion criteria in 2016, 2017, and 2019.  
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