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1 |Introduction    

Artificial Intelligence (AI) is a subdivision of computer science that has transformed how individuals carry out 

their daily activities through the use of machines that require minimal human involvement, thereby enabling 

automated and intelligent actions. AI is considered an incredible prospect for resolving neurology disease issues, 

generating additional perspectives, and enhancing the quality of decision support. AI and Machine Learning 

(ML) are already revolutionizing several medical systems, with further advancements expected in the future [1]. 

The majority of AI algorithms have been referred to as 'black boxes' by researchers due to their intricate and 

virtual nature, making them challenging to explain and justify to individuals. A black box concept is one where 

the inputs and outputs are known, but you are unable to determine how the outputs are produced from the 

inputs. Developers are also unable to explain why the model has reached a particular conclusion or which factors 

were taken into consideration when making a decision. This is due to the models' intricate internal structure, 

and the poor offer of interpretability. The consideration of complicated models' ambiguous nature has limited 

their potential use in making key decisions, such as those involving medical procedures that could endanger 

people's lives and health. Users can accept or reject forecasts and recommendations based on the justification 

behind the predictions made by interpretable ML systems [2]. The existence of this particular obscurity has led 
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Abstract 

Artificial intelligence (AI) systems have been constructed as black boxes that cover their internal logic and learning 

approach from humans, and this has led to several unanswered questions regarding the process and rationale behind 

AI decisions. Explainable Artificial Intelligence (XAI) is a developing branch of AI that focuses on creating various 

methods and tools to unbox the inner workings of black-box AI systems. It aims to generate explanations for AI 

decisions that are easily understood by humans, providing insights and transparency. This paper presented a 

taxonomy that allows comprehensive categorization of XAI studies. The study aims to illuminate the similarities and 

differences among various algorithms used in XAI and highlight the characteristics, benefits, and limitations of these 

algorithms. 
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to a demand for algorithms in the field of Explainable Artificial Intelligence (XAI) [3]. XAI has been designed 

to explain its purpose, perception, and process decision in terms that the common person can understand. The 

concept behind XAI is that AI algorithms and systems shouldn't be "mysterious models" that are 

incomprehensible to humanity [4]. The development of interpretable models, methodologies, and interfaces can 

help to explain the behavior of ML algorithms in a form that is understandable to humans. This is part of having 

fairness, accountability, and transparency for the logic behind its predictions. Several XAI techniques deal with 

the problem of the lack of interpretability and transparency in black-box ML algorithms. Thus, the challenges 

of interpretability and explainability of AI algorithms have become urgent. This study aims to highlight the 

similarities and differences among various algorithms used for XAI and explain the characteristics, benefits, and 

limitations of these algorithms.  

The following are the contributions of this study: 

 First, this study presents and explains the fundamental concept of the XAI toward neurology diseases. 

 A detailed taxonomy is presented to classify the current XAI solutions based on different categorization 

criteria, including stage, scope, applicability, and visualization. 

 A comparative analysis of XAI approaches is designed to interpret decisions made by AI systems 

operating on visual explanation, textual explanation, and more. 

 Finally, this study introduces some of XAI applications for neurology diseases. 

The remainder of this work is arranged in the following manner. Section 2 discusses the background of XAI, 

especially toward neurology diseases. Section 3 discusses the taxonomy of XAI techniques. Section 4 compares 

explanation techniques that can be applied to neurology diseases. Section 5 introduces XAI applications that are 

applied in neurology diseases. Section 6 presents the pros and cons of XAI methods in the medical field. Finally, 

this study is concluded in section 7.   

2 |Background 

Transparency in ML and DL algorithms involves explaining their outcomes and decisions, which can be 

achieved by developing interpretable models, methods, and interfaces to provide human-understandable 

explanations for their behavior [5]. Interpretable ML systems provide users with explanations for accepting or 

rejecting predictions and recommendations, thereby enabling them to understand the reasoning behind these 

outcomes [6]. XAI is a new field of research in ML that examines how AI systems react to black-box decisions. 

The creation of recommendation systems for healthcare systems is also possible using XAI. The main cause of 

the rare successful integration and adoption of AI tools into clinical practice is the lack of acceptable 

explainability and transparency in the majority of the present AI systems. So, XAI is becoming more and more 

critical for DL-based driven applications, mainly in medical and clinical studies. [7]. 

The most recent XAI systems that are related to the neurology diseases field are presented in this section. 

According to the authors in [8], various XAI-enabled methods for medical diseases and XAI applications were 

described, along with recent and current trends in medical diagnosis and application using XAI based on findings 

from various research platforms. Finally, the research directions and challenges achieved were discussed. In [9], 

authors discussed XAI in healthcare in a multidisciplinary way to examine its importance from a legal, medical, 

patient, and technological perspective. The importance of XAI in the clinical system from an ethical and 

personal perspective is concluded by the authors after deducing a set of results for the applicability of views. In 

[10],  the authors introduced an overview of current XAI developments and recent advancements in healthcare 

applications. Through the use of two descriptive clinical-level case studies, the authors demonstrate how XAI 

makes use of multi-modal and multi-center data fusion. According to [11], ML algorithms are interpretable and 

explainable, but the authors identify open challenges and opportunities in the medical context by analyzing their 

interpretability and explainability into two categories: perceptive interpretation and mathematical structural 
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interpretation. The study in [12] discusses already-developed AI methods, such as ML/DL, and expands the 

survey to discuss the implications of XAI in biomedical and future medical applications.   

3 |Taxonomic of XAI Approaches 

In this section, as observed in  

Figure 1, the XAI Approaches will be classified according to four different criteria: Stage, Scope, Applicability, 

and Visualization. The subsequent paragraphs will investigate an examination of the four mentioned criteria. 

 
Figure 1. Taxonomy of XAI approaches. 

3.1 |Stage  

The ante-hoc explanation also called intrinsic explanation is achieved by putting limits on how complicated the 
AI methodology can be (intrinsic), where intrinsic refers to the model's ability to be interpreted at its essence. 
On the other hand, post-hoc explanation refers to the utilization of methods that analyze AI models after 
training. With this method, models can be trained, and explainability is only evaluated during testing [13]. 

3.1.1 |Ante-hoc explanation  

Ante-hoc explanation refers to the traditional ML models such as rule-based models, decision trees, fuzzy 
inference systems, regression models, k-nearest neighbors, naive Bayes, and simple association rules to be 
understood by human experts, but more sophisticated to fit a relationship between input and output well [14]. 

3.1.2 |Post-hoc explanation 

Post-hoc explanation attempts to provide local models for a single prediction and make it repeatable rather than 
explaining the behavior of the entire system. Post-hoc methods have increased in popularity in the applications 
of deep learning because algorithmic transparency is regarded to be unachievable for these systems [15]. 
Compared to an ante-hoc explanation, which trains a DNN and then tries to interpret the behavior of the 
resulting black box network, a post hoc explanation causes the DNN to be explicable [16]. 

3.2 |Applicability  

The applicability of model-specific techniques is limited to specific model classes due to their reliance on the 
inner mechanisms of a particular model. Model-specific approaches incorporate interpretability constraints into 
the basic framework and training procedures of algorithm models [17]. On the other hand, model-agnostic 
methods use the inputs and predictions from black box models to produce explanations. They may be used with 
any AI model and are used once training is complete [17]. 

3.2.1 |Model-specific explanation 

Model-specific explanation techniques are built around the individual model's parameters. The GNNExplainer 
is a type of model-specific explainability technique that is specifically designed to handle the intricate nature of 
data representation, necessitating the use of GNNs in particular [18].  
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3.2.2 |Model agnostic explanation 

Model Agnostic approaches are not restricted to certain model architectures and are typically applied in the 
post-hoc investigation. The structural parameters or internal model weights cannot be accessed directly by these 
methods [19]. Model-agnostic explanation depends only on the input and output of the neural network. The 
user can analyze how the neural network's output has changed by modifying the input. Also, this explains which 
regions are responsible for the output [16]. 

3.3 |Scope  

An explanation's scope determines whether it involves the whole model (global explanation) or just one single 
output (local explanation). Therefore, the scope of explanation is categorized into three types: 1) local 
explanation 2) global explanation 3) multiple-scope explanation. 

3.3.1 |Local explanation 

Local explanation methods apply to single-input interpretability. This can be accomplished by developing 
techniques that can explain a certain prediction or result [20]. Local explanation in the context of XAI refers to 
the interpretation of a model's decision to proceed for a particular instance or expectation. By prioritizing the 
key aspects or features that affected the model's decision, it attempts to provide insights into how the model 
arrived at a specific output for a given input [21]. The generation of local explanations has been approached 
using a variety of methodologies, such as LIME, SHAP, feature importance, gradient-based approaches, and 
counterfactual analysis [22]. 

3.3.2 |Global explanation 

Global explanation, also known as a dataset-level explanation focuses on the whole model by applying the 
overall knowledge of the model and the related data [14]. It usually also explains the model's behavior. It aims 
to offer a thorough comprehension of the behavior and performance of the model by recognizing the key 
features or factors that produce an effect on the model's predictions [21].  

3.3.3 |Multiple-scope explanation  

In [23], the authors introduced a gradient-based method for determining the main local and global properties 
of the model. Multiple-scope explanation refers to the explanation of a model's decision-making process across 
multiple levels of abstraction, ranging from low-level features to high-level concepts or decisions [24].  

3.4 |Visualization  

Surrogate methods involve training a simpler, more interpretable model that approximates the behavior of a 
more complex, black-box model. The decision-making process of the more complex model can then be 
explained using the simpler model. Surrogate approaches are helpful when the underlying black-box model is 
too sophisticated to be understood directly or when the training data is too private or sensitive to be made 
public [25]. On the other hand, visualization techniques make use of visual tools like graphs, charts, and 
heatmaps to illustrate the connection between the model's inputs and outputs. In addition to helping users find 
patterns, trends, and anomalies in the data that may be important to the decision-making process of the model, 
visualization techniques are useful for creating both local and global explanations [26].   

4. |XAI Techniques 

As shown in Figure 2, The XAI techniques will be classified into four separate types, which will be more detailed 
in the subsequent subsections. 
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Figure 2. Four types of XAI techniques. 

4.1 |Visual explanation 

This section will present and explore XAI approaches designed to interpret decisions made by AI systems 
operating on visual data. Table 1 presents a comparison of visual explanation methods.  

4.1.1 |Backpropagation-based approaches 

(Guided) backpropagation and deconvolution: Guided backpropagation and deconvolution can be 
combined to provide more accurate and interpretable visualizations. In [27], the authors offered one such 
example of this combination. Grad-CAM is a technique presented by the authors that applies guided 
backpropagation and global average pooling to provide visualizations that emphasize the image 
domains essential to a specific neural network's decisions. 

 
Class activation mapping (CAM): CAM is a visual explanation approach that generates visualizations 

of picture regions that are significant for a neural network's classification decision. In [34], the authors suggested 
an approach for generating class activation maps from the last convolutional layer of a CNN. The CAM 
technique highlights the regions of an image that are important for a particular class, allowing for better 
interpretability of the network's decision. Specifically, this approach utilizes the pooling operation before the 
ultimate decision layer to determine the importance of input regions. It accomplishes this by propagating the 
final layer's parameters in reverse through the convolutional maps of each layer within the model [28]. 
Consequently, the computation of the localization map is defined as follows: 

𝐿𝐶𝐴𝑀
(𝑐) (𝑥, 𝑦) = 𝑅𝑒𝐿𝑈(∑ 𝑊𝑛

(𝑐) ∑ 𝑓𝑛(𝑥, 𝑦)𝑥,𝑦𝑛 ),                                                                                                                                                                           (1) 

The weight equivalent to class c for unit n is denoted as 𝑊𝑛
(𝐶)

, while fn (x, y) represents the output of unit n at 
the decision layer of the network. 
 

Gradient-weighted class activation mapping (Grad-CAM): Grad-CAM is an extension of the 
CAM method that uses gradients to compute the importance of each feature map in a CNN approach. Grad-
CAM was proposed by Selvaraju et al. in 2017 [27]. The authors proposed a technique to create class activation 
maps using gradients, which allows for more accurate visualizations than traditional CAM. Grad-CAM has 
become a popular technique for visualizing the regions of an image that are important for a CNN classification 
decision. Grad-CAM has been used in several applications, such as medical image analysis, object detection[29], 
and natural language processing [30]. In object detection, Grad-CAM has been used to create heatmaps that 
highlight the regions of an image that contain objects[29]. In natural language processing, Grad-CAM has been 
used to visualize the attention of a model on different words in a sentence [30].  
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Table 1 Comparisons of visual explanation methods. Ex= Explainability; L= Local; G= Global; H= High; M= Medium. 

XAI Method Description Ex- 
Type 

Ex- 
Level 

Agnostic? Scalability Data Types Pros Cons 

 
LIME [22] 

Produces any model's locally accurate 
explanations by modifying the data 
input. 

L H Yes H Tabular/text/images Local explanations that are 
simple to comprehend and 
interpret are provided. 

Potentially fails to represent 
the model's global behavior. 

 
SHAP [21] 

Give each characteristic a value that 
represents how much it contributed to 
the prediction. 

L/G H Yes M Tabular/text/images Offers coherent and 
scientifically supported 
explanations for both local 
and global explanations. 

If the data is high 
dimensional, it could be 
computationally costly. 

 
Deep SHAP 

[31] 

Deep SHAP is a technique that uses deep 
neural networks to apply Shapley values. 
By examining the interactions between 
several characteristics, it calculates the 
contribution of each feature to the 
model's output. 

G H Yes M Tabular/text/images Allows for global 
interpretability and can 
capture complicated feature 
relationships. 

Computation-intensive and 
maybe not scalable to huge 
models or datasets. 

 
CAM 
[27, 28] 

CAM is a technique that creates a 
heatmap of class activation using the last 
convolutional layer of a DNN. 

L H No H Images Offers global interpretability 
and the ability to record 
complicated feature 
relationships. 

It might not be realistic for 
complicated pictures. 

 
GRAD-CAM [32, 

33] 

Creates visual explanations by 
emphasizing the areas of a picture that 
are crucial for the predictions. 

L H No H Images Provides visual explanations 
that are easy to understand 
and interpret. 

Applied just to data in 
images. 

 
Integrated 

Gradients [34] 

By integrating the gradients from a 
baseline input to the actual input, this 
method calculates the contribution of 
each feature to the prediction. 

L H Yes H Tabular/text/images Consistent, theoretically 
supported local explanations 
are offered. 

If the data is high 
dimensional, it could be 
computationally costly. 

(Guided) 
Backpropagation 

and 
Deconvolution 

[27] 

These gradient-based techniques show 
how each input characteristic affects the 
final result of the model. 

L M No H Tabular/text/images Easy to use, effective in 
terms of calculations. 

Can't capture intricate 
feature relationships and 
might not generalize to other 
models or datasets. 

 
Occlusion-based 

[35]. 

Occlusion-based techniques include 
masking or occluding specific input 
characteristics and evaluating how the 
outcome prediction is affected. 

L/G M Yes H Tabular/text May offer local and global 
explanations, and it can be 
used with many models. 

Only discrete data can be 
interpreted, and high-
dimensional data might be 
computationally costly. 

 
LRP [36]. 

Calculates each neuron's contribution to 
the prediction by backpropagating the 
prediction across the network and giving 
each neuron a relevance score. 

L/G H Yes H Tabular/text/images Explain in detail at the 
neuronal level. 

Depending on the rule 
selected for determining 
relevance ratings. 



Navigating the Depths of Explainable AI (XAI): Methods, Applications, and Challenges in Neurological … 

 

  

44
 

  

Grad-CAM is computed as the following: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
(𝑐) (𝑥, 𝑦) = 𝑅𝑒𝐿𝑈(∑ 𝑊𝑛

(𝑐) ∑ 𝑓𝑛(𝑥, 𝑦)𝑥,𝑦𝑛 ),                                                                                                                                                                 (2) 

𝑊𝑘
(𝑐)

=  
1

𝐻 .  𝑊
∑ ∑

𝜕𝑌(𝑐)

𝜕𝑓𝑛(𝑖,𝑗)

𝑊
𝑗=1

𝐻
𝑖=1  ,                                                                                                                                                                                               (3) 

Layer-wise relevance propagation (LRP): The LRP method is utilized to explain the predictions 
made by DNNs. This methodology historically propagates the prediction score from the output layer back 
through the network's layers. The LRP method identifies the individual contribution of each input feature 
towards the final output [36]. In [37], the authors proposed a technique for explaining the predictions of DNNs 
that are based on the conservation of relevance principle, which aims to attribute relevance to the input features 
based on their contribution to the output prediction. LRP has become a popular technique for visualizing the 
contribution of input features to the prediction of a neural network. LRP has also been extended and improved 
upon in various ways. One such extension is Deep Taylor Decomposition (DTD) [36], which decomposes the 
relevance of each neuron into contributions from its input features. Another extension is relevance Propagation 
By Reconstruction (RPR) [37], which generates a reconstruction of the input features based on their relevance 
scores. The basic rule of the LRP method can be defined as the following. 

𝑅𝑗 = ∑
𝑎𝑗 .𝑤𝑗𝑘

∑ 𝑎𝑗𝑤𝑗𝑘0,𝑗
𝑅𝑘𝑘 ,                                                                                                                                                                                                                (4) 

The variables j and k are used to denote two neurons that are members of consecutive layers. The above formula 
is applied in a recursive way to calculate the value of R for every neuron in the preceding layer. "a" represents 
the activation of a specific neuron, whereas "w" represents the weight associated with the connection between 
two neurons. 

Deep SHaply additive explanation (Deep SHAP): Deep SHaply additive explanation (Deep SHAP) 
is a method for interpreting the predictions of DNNs by assigning importance values to each input feature. It's 
based on the Shapley value, a cooperative game theory notion that values each player's contribution to the 
game's outcome. Deep SHAP was proposed by Lundberg and Lee in 2017 [21]. The authors proposed a 
technique for explaining the predictions of DNNs that are based on the Shapley value. Deep SHAP computes 
the contribution of each input feature to the model's output by comparing the model's prediction with and 
without the feature. This allows for the identification of important features and the creation of a summary plot 
that shows the contribution of each feature to the model's prediction. 

Trainable attention: Trainable attention is a technique in DL that involves learning a set of attention 
weights to weigh the importance of different input features during the model's computation. Trainable attention 
was published by [38]. The authors introduced a neural network architecture that uses a set of trainable attention 
weights to dynamically select a subset of input features that are most relevant to the current task. The attention 
weights are learned along with the other parameters of the network using backpropagation. Trainable attention 
has been extended and improved upon in various ways. One such extension is self-attention [39], which uses 
the input features themselves to compute the attention weights, rather than learning them from scratch. Another 
extension is multi-head attention [40], which uses multiple sets of attention weights to attend to different parts 
of the input features simultaneously.  

4.1.2 |Perturbation-based approaches 

Perturbation-based approaches are a class of explainability methods that involve introducing small changes, or 
perturbations, to input data to observe changes in model outputs. These methodologies are especially valuable 
in understanding the decision-making mechanism of intricate models, such as deep neural networks, where the 
connection between input and output is frequently complex. 

 
 Occlusion-based methods: Occlusion-based methods involve systematically masking or occluding parts 
of the input data to observe changes in the model's output. By comparing the model's output with and without 
the occlusion, these methods can identify which input features are most important for the model's decision [35]. 

 
Local interpretable model-agnostic explanations (LIME): LIME is a popular approach for 

producing local explanations of a model's behavior by perturbing input data. LIME generates a surrogate model 
that approximates the original model's behavior in a local region around the input of interest. The surrogate 
model is subsequently used to explain the decision-making procedure of the primary model by highlighting the 
input elements that exerted the most significant impact on the decision [22]. 
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Integrated Gradients: Integrated Gradients is a perturbation-based approach for generating feature 
importance scores that are based on the model's sensitivity to changes in the input data. Integrated Gradients 
compute the gradient of the model's output concerning the input data and integrate it along a path from a 
baseline input to the input of interest. This integration process generates a feature importance score for each 
input feature that reflects its contribution to the model's decision [34]. To determine the gradients of points, 

Integrated Gradients constructs a path from the reference input 𝑥̃ to x. Points are generated in images by 

intersecting 𝑥̃ and x and gradually changing the transparency of x, and integrated gradients are obtained by 

collecting gradient data. In mathematical notation, the reference 𝑥̃ input x integrated gradient is as follows: 

i − th gradient =  
𝜕𝐵(𝑥)

𝑥𝑖
,                                                                                                                             (5) 

Relevant scores are determined by the following formula: 

𝑒𝑖(𝑥) = (𝑥𝑖 − 𝑥̃𝑖) ∫
𝜕𝐵(𝑥̃+((𝑥−𝑥̃)))

𝜕𝑥𝑖
 . 𝑑 ∝

1

∝=0
,                                                                                                 (6) 

4.2 |Textual explanation 

Textual explanation is an important aspect of XAI that aims to provide understandable and interpretable 
explanations of ML models to humans. It helps users understand the decision-making process of these models, 
which is essential for building trust and accountability. Table 2 presents a comparison of textual explanation 
methods. 

4.2.1 |Image captioning 

Image captioning is a popular application of XAI that generates textual explanations for images. Image 
captioning models use DL techniques to automatically generate natural language descriptions of the content in 
an image. The generated captions can provide textual explanations of what the image contains and what is 
happening in it. In [41], the authors proposed a model called bottom-up and top-down Attention for image 
captioning. The model uses a bottom-up approach to generate visual features of the image and a top-down 
approach to generate the caption. The model learns to attend to the most relevant regions of the image and 
generate a caption that describes the content of those regions. 

4.2.2 |Image captioning with visual explanation 

Image captioning with visual explanation is an XAI technique that combines image captioning with visual aids 
to provide more informative and interpretable explanations of image content. In [42], the authors proposed a 
model called Generating Visual Explanations (GenEx) that generates image captions along with spatial attention 
maps that highlight the most important regions of the image that contributed to the caption. The model uses 
the DNN to generate captions and attention maps that are trained jointly to ensure that they are aligned with 
each other. In addition to providing more informative and interpretable explanations, image captioning with 
visual explanation techniques can also be used for applications such as image retrieval and content-based image 
retrieval. In [43], the authors proposed a model that generates captions and attention maps for images in a large 
dataset and uses them to retrieve images based on their content. 

4.2.3 |Testing with concept activation vectors (TCAV) 

Testing with Concept Activation Vectors (TCAV) is an XAI technique used to explain the predictions of DNNs 
by analyzing their internal representations. TCAV uses a set of user-defined concepts (such as "striped" or 
"floral" for image classification models) and compares the activations of different layers in the neural network 
for each concept [44].  
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Table 2 Comparison of textual explanation methods. Ex= Explainability; L= Local; G= Global; H= High; M= Medium; W= Weak 

XAI Method Description Ex- 
Type 

Ex- 
Level 

Agnostic? Scalability Data Types Pros Cons 

Image 
Captioning 

[45, 46] 

Uses deep learning models to 
provide textual descriptions of 
pictures that let people 
comprehend what's being 
shown in the picture. 

L W No H Images Provides explanations 
of the images that are 
understandable to 
humans. 

Possibly not going to 
announce how the 
model predicts 
things. 

Image 
Captioning 
with Visual 
Explanation 

[42] 

Extends image captioning by 
producing not just verbal but 
also visual explanations that 
emphasize the parts of the 
picture that the model used to 
make a judgment. 

G M No M Images Provide more 
thorough explanations 
of how the model 
generates its 
predictions than only 
the image descriptions 
do. 

To create visual 
explanations, more 
processing power can 
be needed. 

Testing with 
Concept 

Activation 
Vectors 

(TCAV)[47] 

Tests the model's sensitivity to 
changes in the activation of 
high-level concepts to 
determine how important 
those concepts are to the 
model's decision-making 
process. 

G H Yes H Tabular/text/images Sheds light on the 
broad ideas that a 
model believes are 
essential for its 
predictions. 

Choosing concepts to 
test requires domain 
expertise. 
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4.3 |Example-based explanation 

An example-based explanation is a type of explanation that uses specific examples to illustrate a broader concept 
or idea. It involves breaking down complex concepts or processes into smaller, more manageable pieces that 
can be understood through concrete examples. An example-based explanation is useful because it helps make 
abstract or complex concepts more tangible and relatable, allowing the listener to better understand and retain 
the information. 

4.3.1 |Influence functions 

Influence functions are a class of methods used in the example-based explanation, which aim to identify which 
examples in a dataset have the most influence on a specific prediction or model outcome. The basic idea is to 
perturb each example in the dataset and observe the resulting change in the prediction, to estimate the influence 
of that example on the model [48]. One of the most commonly used influence functions is the Leave-One-Out 
(LOO) method, which involves retraining the model with all but one example and then measuring the difference 
in prediction for the excluded example. The LOO influence function is useful for a variety of tasks, including 
feature selection, outlier detection, and model diagnosis [49]. Another popular influence function is the 
influence function based on derivatives, which involves computing the gradient of the model's loss function 
concerning each training example and then using the gradient to estimate the influence of each example on the 
model. This method has been used in a variety of applications, including robust optimization, model pruning, 
and adversarial example detection [50].  

4.3.2 |Prototypes 

Prototypes are a class of methods used in example-based explanation, which aim to identify representative 
examples in a dataset that can help interpret the behavior of a model. The basic idea is to identify examples that 
are typical or representative of a particular class or decision boundary and use these examples to provide insight 
into how the model is making predictions [51]. Prototype-based explanation methods have been applied to a 
wide range of tasks, including time series analysis, image classification, and natural language processing. They 
are effective in providing insights into the behavior of complex models and can be used to improve the 
interpretability and trustworthiness of ML systems [51].  

4.3.3 |Examples from the latent space 

Examples from the latent space are a class of methods used in example-based explanation that aim to identify 
representative examples in the low-dimensional latent space of a generative model. The basic idea is to identify 
examples that are typical or representative of a particular class or distribution in the latent space and use these 
examples to provide insight into the behavior of the generative model. One of the most commonly used latent 
space-based explanation methods is traversal, which involves exploring the latent space by perturbing the latent 
code of a specific example and observing the resulting changes in the generated output. This allows us to 
understand how the generative model maps the latent space to the output space and can provide insights into 
the underlying structure of the data [52].  Another popular method is latent variable inference, which involves 
inferring the latent variables that are most likely to have generated a specific example. This allows us to identify 
the latent factors that are most important for generating the observed output and can provide insights into the 
generative process of the model [53]. Examples from the latent space are effective in providing insights into 
the behavior of generative models and can be used to improve the interpretability and controllability of these 
models [54]. 

4.4 |Graphical explanation 

Graphical explanations are a type of interpretability technique used in XAI to explain how AI models make 
decisions. In [55], the authors provide a comprehensive survey of different interpretability techniques, including 
graphical explanations. It covers the advantages and drawbacks of different techniques and provides examples 
of real-world applications. In [56], the authors introduce a method for visualizing the decision-making process 
of DNNs called Prediction Difference Analysis (PDA). PDA generates graphical explanations that highlight 
the features that are most important in making a prediction and compares the predictions of two models to 
identify areas of disagreement. In [57], the authors provide a conceptual framework for understanding 
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interpretability techniques, including graphical explanations. It introduces the concept of "feature visualization" 
techniques that generate graphical representations of features that are most important in making a prediction 
and provides examples of different types of visualizations.  

5|XAI toward Neurology Diseases: Applications 

There has been a growing inclination toward employing AI in the medical field, especially in the neurology 

diseases field. AI algorithms have proven their capacity to analyze vast quantities of medical data and derive 

valuable insights that may be challenging, if not impossible, for humans to grasp [58]. The key aspect of medical 

AI lies in obtaining informed consent from patients, ensuring that decision-making is shared between doctors 

and patients in a manner that prioritizes the patients' final say. Therefore, the implementation of medical AI is 

contingent upon patients being adequately informed about its essential functionalities beforehand, clearly and 

understandably. To accomplish this goal, there has been a focus on recent research endeavors aimed at creating 

XAI systems. These systems aim to provide medical practitioners with interpretations and explanations that 

can enhance the reasoning and decision-making processes within the neurology diseases field [59]. To achieve 

this goal, the XAI can be investigated and researched in various medical subdomains such as medical image 

analysis, medical record analysis, and drug discovery. CNN, 3D CNN, Visual Geometry Group 16 (VGG16), 

3D Residual Attention Deep Neural Network (3D ResAttNet), and more are the DL models used in the studies 

that utilize LRP, GradCAM, and occlusion sensitivity methods as AI explanations.  

 LRP creates a visual explanation of significant brain areas as heat maps for recognizing brain atrophy. 

In [60],  authors reported that they uncovered comparable significant features by applying composite LRP and 

multiple propagation rules. Furthermore, the author highlights that damage to the left temporal lobe impairs 

verbal semantic memory, while injury to the right temporal lobe hinders visual memory. These data are 

contributed by both authors to aid doctors and radiologists in diagnosing and creating confidence in the system. 

In [61], the GradCAM method is used to illustrate the predictions of a VGG16 DL model. Nevertheless, the 

authors demonstrate that CNN models with self-attention outperform VGG16 with GradCAM. The heat maps 

have been assessed as vastly improved to the baseline model by clinical professionals who found them to be 

useful. The authors further assert that the approach improves classification performance and interpretability. 

In [62], The implementation of GradCAM was utilized to visually represent heat maps depicting a four-way 

classification of AD that was predicted by a Generative Adversarial Network (GAN) model. Differently colored 

heatmaps generated by the system contribute to the accuracy of predictions regarding the development and 

severity of dementia. The approach has been shown useful for accurately discriminating between classes and 

making suitable early predictions. The color-coded heat map in the research, which depicted the advanced 

characteristics of different stages of dementia, would assist medical practitioners in making decisions. In [63], 

the authors created a new software technique for the early diagnosis of AD by proposing a simple-to-

understand 3D ResAttNet. The researchers claimed that utilization of local, global, and spatial information in 

the 3D ResAttNet enhances the diagnostic accuracy and explainability of MRI images when employing 

GradCAM. The research presents a comprehensive end-to-end system for automated disease diagnosis. 

Furthermore, the methodology employed in this approach elucidates the mechanism by which crucial brain 

regions, including the hippocampus, lateral ventricle, and a significant portion of the cortex, contribute to the 

facilitation of transparent decision-making. 

  In [64], a modified Residual Network (ResNet) architecture was utilized to analyze a dataset from the 

MR CLEAN Registry, specifically focusing on CT angiography scans. The goal was to demonstrate the 

superiority of automated DNN over radiological imaging biomarkers in stroke prediction and treatment 

selection. Grad-CAM++ was used for visualization, and the model was found to be useful for stroke outcome 
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prediction. In [65], authors used a variety of 3D-CNNs, including 3D GradCAM, for classification and AI 

explainers. The heat maps are helpful for medical professionals because they highlight the importance of the 

lateral ventricle and most cortical regions in the diagnosis of AD. In [66], The researchers apply High-

Resolution Activation Mapping (HAM) to offer visual explanations with enhanced resolution, integrating values 

generated from both the final convolutional layer and intermediate data. High-quality heatmaps that show 

discriminative localization of brain abnormalities outperform earlier studies. The clinical utility of the model 

was validated by the authors based on its high diagnostic accuracy and transparent explanations. In [67], the 

occlusion sensitivity approach is used to generate heat maps by occluding a part of the input image with a black 

patch. From changes in the output probability predictions, the model's brain areas contributing to the 

classification decision were directly observable. White matter hyperintensity was found and reaffirmed as a 

neuroimaging biomarker for dementia by the authors. One study utilized LRP to deconstruct the network's 

output score of 18-Fluoro-Deoxyglucose Positron Emission Tomography (18 FDG-PET) scans into individual 

contributions while keeping the conservation principle and heat map produced. The study uses saliency maps 

to build voxel-wise heat maps for each contribution. 

 

6|Pros and Cons of XAI Approaches toward Medical Field 

 
Explaining the pros and cons of XAI approaches in the medical field can help us understand their potential 
benefits and limitations.  

6.1 |Pros of XAI approaches in the medical field: 

1. Enhanced trust and acceptance: XAI techniques provide interpretability and transparency, enabling 
healthcare professionals to understand and trust the decisions made by AI systems. This promotes 
increased acceptance and adoption of AI in neurology disease applications [68].  

2. Error detection and diagnosis: XAI methods can help identify errors or biases in the AI models, 
enhancing their reliability and robustness. These approaches enable healthcare practitioners to detect and 
rectify potential issues in the decision-making process [68].  

6.2 |Cons of XAI approaches in the medical field: 

1. Increased complexity: Some XAI methods can be computationally expensive and complex, requiring 
additional resources and expertise to implement and interpret. This may limit their practicality and 
scalability in certain medical settings [68]. 

2. Privacy and security concerns: The interpretability provided by XAI methods may reveal sensitive 
patient information, leading to privacy and security risks. Careful consideration must be given to ensure 
the protection of patient data when implementing XAI approaches [69]. 

7|Conclusions 

This study presents an overview of the significant topic of XAI techniques and their application in the 

comprehension of image classification tasks in the field of neurology diseases. XAI combined with DNN 

models can aid in neurology disease identification and diagnosis and give the doctor new insights about the 

right diagnosis. This study illuminated a detailed taxonomy that provides an insightful categorization of XAI 

studies and the similarities and differences among various algorithms used in XAI, thus facilitating further 

advancements in methodology.  
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