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1 |Introduction    

The increased incidence of skin cancer makes it imperative to create a reliable system for automatically 

classifying skin cancer. The most deadly and rapidly spreading type of skin cancer is melanoma as it more 

dangerous and aggressive type. The brain, liver, and lungs are just a few of the human organs where it can 

quickly spread. Melanoma can lead to a wide range of problems, after receiving therapy for skin cancer, some 

of these problems include lymph node involvement, which causes lymphedema or swelling in your arm or 

leg. The Surveillance, Epidemiology, and End Results database reveals a rise in the number of cases of 

melanoma per 100,000 people in the US between 1990 and 2018, from 13.8 in 1990 to 22.6 in 2018 [1]. The 

American Cancer Society predicts that there will be 97,610 new cases of melanoma in the US in 2023 and that 

there will be about 7,990 deaths, including 2,570 females and 5,420 males [2]. These statistics demonstrate the 

need for quick and precise early diagnosis procedures to assist clinicians in identifying skin cancer at an early 

stage and enhancing the likelihood of a cure before the disease progresses [3]. Convolutional neural networks 

(CNNs), which make up the majority of deep learning techniques, have recently received a lot of interest for 

their use in spotting skin malignancies in dermoscopy images. The need for early detection and the increased 
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incidence of skin cancer make it imperative to create a reliable system for automatically classifying skin cancer. 

Numerous well-known networks, such as GoogleNet [4], VGGNet [5], and ResNet [6], have been successfully 

applied to the classification of skin cancer since the advent of deep learning. The authors of this study [7], 

proposed a hybrid method for classifying malignant and benign skin cancer. They used deep features of deep 

neural networks and the stacked cross-validation algorithm (SCV-DF), and it has a 90.9% accuracy rate. A 

CNN model was also presented in [8], along with its seven distinct architectures, including ResNet50, 

VGG16, InceptionV3, VGG19, Xception, and MobileNetV2. The authors discovered that Xception provided 

an accuracy of about 85.303%. As well, this paper [9] proposed a highly efficient hybrid detection and 

segmentation method that combined RetinaNet and MaskRCNN. The ISIC-2018 and PH2 datasets were 

used to train and validate the suggested technique, and the results demonstrated that the proposed method 

outperformed the alternatives. This paper [10], introduced a system for detecting skin cancer that uses support 

vector machine (SVM), probabilistic neural networks, random forest (RF), and coupled SVM+RF classifiers, 

among other classification methods. The outcomes demonstrated that the SVM+RF classifier outperformed 

other classifiers. 

Due to the variety of skin lesions it contains, the HAM10000 dataset is frequently used by researchers. Figure 

1 shows a subset of seven classes of the HAM10000 dataset. [11], suggested using adversarial learning and 

transfer learning to classify skin diseases to increase the generalizability of models to new samples and decrease 

cross-domain shift with an accuracy (0.909) and AUC (0.967). [12], developed a weight pruning technique for 

thin neural networks to compensate for accuracy loss, enhance model performance, and increase model 

dependability in the classification of skin cancer with an accuracy of 0.975. [13], proposed a technique for 

classifying skin diseases that combines CNN with one-versus-all (OVA) and this method gave an accuracy of 

0.929. To get domain-dependent noise vectors, the authors of this paper [14], used a variational autoencoder 

network. In addition, a student-like distribution was utilized to increase the diversity of the images, and an 

auxiliary classifier was applied to create images of certain classes with an accuracy of 0.925. Inception-v3, 

InceptionResNet-v2, ResNet-152, and DenseNet-201 are four brand-new deep CNN models that [15] used 

to classify eight different forms of skin tumors on the HAM10000 and PH2 datasets. Finally, experimental 

findings showed that, in terms of ROC AUC score, these CNN models' diagnostic level surpasses that of 

dermatologists. Pre-trained Mobilenetv2 is used in the act of the back pillar of the DeepLabv3+ model and 

trained on the best parameters that significantly increase the segmentation of infected skin lesions [16]. 

DesneNet201's pre-trained feature extraction is used to do the multi-classification of the skin lesions. Three 

models built on Cubic SVM, Weighted KNN, and Fine KNN were suggested by the authors. Finally, the 

models attained mean ROC of 0.98 and accuracy of 0.9065, 0.8696, and 0.9201 respectively on the 

HAM10000 dataset. 
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Figure 1. A subset of seven classes of the HAM10000 dataset. 

 

[17], examined how boundary localization and normalization approaches affect the detection of melanoma. 

Utilizing four comparable datasets, PH², ISIC 2016, ISIC 2017, and HAM10000, the proposed method is 

assessed. According to experimental results, the DenseNet-121 with Multi-Layer Perceptron (MLP) performs 

better on the PH², ISIC 2016, ISIC 2017, and HAM10000 datasets with accuracy scores of 0.9833, 0.8047, 

0.8116, and 0.81 respectively. On the HAM10000 dataset, [18] combined Inception ResNet-v2 with the Soft-

Attention technique to get the best classification result, with an accuracy of 0.934, an average precision of 

0.937, and an AUC of 0.984. [19], introduced the Two-Timescale Update Rule to produce features with great 

fine-grainedness and integrated the attention mechanism with PGGAN to acquire overall features of skin 

lesions images, all while enhancing the stability of GAN with an AUC 0.793. [20], suggested deep learning as 

a technique for precisely extracting a lesion zone. The quality of the image is first improved using Enhanced 

Super-Resolution Generative Adversarial Networks (ESRGAN). Then, regions of interest (ROI) are 

separated from the entire image using segmentation. To categorize skin lesions, the image is next examined 

using CNN and an updated version of Resnet-50. On the HAM10000 dataset, the suggested method obtained 

an F-score of 0.86, accuracy of 0.86, precision of 0.84, and recall of 0.86. AUC of 0.99 was achieved by various 

deep learning models using the HAM10000 dataset. Two CNN models were used by [21] to separate benign 

and malignant skin lesions into different categories. According to the data, the model had a better 

classification accuracy than dermatologists' diagnosis when the results were compared to those. 

We summarize our contributions as follows: 

 We propose a new hybrid model based on a convolutional neural network and random forest 

algorithm (CNN-RF model) for detecting and classifying skin cancer images. 

 The proposed model (CNN-RF) can overcome class imbalance by utilizing different oversampling 

methods. The proposed model was validated using the HAM10000 dataset and different batch sizes 

to show the ability of our proposed model. 

 In addition, we implement the proposed model on different image sizes to ensure the consistency 

and flexibility of our model. 



Towards Higher Accuracy in Diagnosis of Skin Cancer: An Adaptive CNN-RF Model for Diagnosis … 

 

4

 

  
 The proposed model can classify seven classes of the utilized dataset with 98.88 % for accuracy, 0.99 

for precision, 0.99 for recall, 0.99 for F1-score, and 0.9999 for AUC. 

The outline of this paper is arranged as follows. Our proposed method is presented in detail in Section 2. 

Results and discussion are shown in Section 3. Sensitivity analysis and comparison are explained in Section 4. 

The conclusion and future work are summarized in Section 5. 

2 | Proposed Methodology 

Using machine learning and specialized convolutional neural networks, we created a fully automated method 

for identifying and classifying skin lesions. The suggested work mainly focused on pre-processing and 

classification. This study makes use of the standard HAM10000 dataset, which consists of 10015 images of 

skin lesions classified into seven categories. In this section, first, the utilized methods and algorithms will be 

reviewed. Then the proposed model will be discussed in detail. We applied five types of oversampling 

methods to overcome the imbalance of the HAM10000 dataset: random oversampling, SMOTE, SMOTE-

ENN, SMOTE-TOMEK, and ADASYN. One of the most frequently chosen methods for dealing with an 

imbalanced dataset is resampling the data. For this, there are primarily two kinds of methods: under-sampling 

and oversampling. Oversampling is typically favored over under-sampling methods. The reason is that when 

we under-sample, we frequently leave out data points that might contain crucial information [22, 23]. Five 

different types of oversampling techniques will be covered briefly. 

Random Over-Sampling: The simplest oversampling method for resolving the dataset's imbalance is random 

oversampling. By re-creating the minority class samples, it balances the data. While there is no information 

loss as a result, the dataset is more likely to be over-fit because the same data is being copied [24]. 

SMOTE (Synthetic Minority Oversampling Technique): SMOTE is an oversampling technique in which 

made-up samples are created for the minority class. By using this approach, the over-fitting problem caused 

by random oversampling is mitigated. It focuses on the feature space to create new instances by using 

interpolation between the positive instances that are close together [25]. 

SMOTE-ENN: Another hybrid strategy is SMOTE + ENN, which removes additional observations from 

the sample space. Here, the nearest neighbors of each member of the majority class are calculated using ENN, 

another under-sampling technique. This method can be used in conjunction with SMOTE's oversampled data 

to perform thorough data cleaning [26]. 

SMOTE-TOMEK: Such a hybrid method, SMOTE+TOMEK, seeks to eliminate overlapping data points 

for each of the classes scattered in the sample space. Under-sampling and oversampling strategies are 

combined in hybridization techniques. This is done to improve how well classifier models perform on samples 

produced using these strategies [27]. 

ADASYN (Adaptive Synthetic Sampling Approach): Another kind of SMOTE is ADASYN. ADASYN 

generates synthetic data following the data density and the density of the minority class has an inverse 

relationship with the growth of synthetic data. The ADASYN method would then focus excessively on these 

feature space regions. Before employing the ADASYN, it could be preferable to eliminate the outlier [28]. 

Convolutional Neural Network (CNN): CNN is excellent at processing inputs such as images, speech, or 

audio, which sets them ahead of other neural networks. Convolutional, pooling and fully-connected layers are 

their three primary types of layers. The fundamental layer of a CNN is the convolutional layer, which is 

similarly where the most of computation happens. It requires input data, a filter, and a feature map. Pooling 

layers, also referred to as down-sampling, do dimensionality lessening, which depresses the number of 

parameters in the input. In the fully connected layer, each node in the output layer is directly associated with 

a node in the layer above it. Using the features that were repossessed from the previous layers, this layer 

conducts the classification operation [29, 30]. 

Random Forest (RF): A popular machine learning algorithm identified as random forest blends the output of 

various decision trees to yield a single outcome. Its common use is inspired by its flexibility and usability 
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because it can loosen classification and regression problems. Additional benefits of RF include robustness: 

RF is a strong algorithm that can deal with erratic data. It can generalize effectively to new data since it is less 

likely to overfit the data. Accuracy: RF is one of the most reliable and accurate machine learning algorithms. 

Feature Importance: The assessment of feature relevance provided by RF can aid in feature selection and data 

comprehension. These factors make RF useful for a variety of tasks, particularly image classification [31, 32]. 

Figure 2 shows the phases that make up the proposed work. The proposed hybrid classification model consists 

of three phases, including data pre-processing, features extraction using customized CNN, and classification 

of skin lesions using the RF algorithm. At first, data were pre-processed before being used by CNN. This 

operation included oversampling techniques, image resizing, standardization, and splitting data. HAM10000 

dataset has seven classes and each class has a no. Image as follows: (akiec: 327, bcc: 514, bkl: 1099, df: 115, 

nv: 6705, vasc: 142, melanoma: 1113). As seen the dataset is imbalanced so, resampling techniques are required 

to overcome the class imbalance. We implemented five types of oversampling methods: random 

oversampling, SMOTE, SMOTE-ENN, SMOTE-TOMEK, and ADASYN. Then we standardized the pixel 

values of images to a range of 0–1. After that, data was split as 80% for training and 20% for testing. 

 
Figure 2. The phases that make up the proposed work. 

 

Features extraction phase: in this phase, features were extracted using a customized CNN. Figure 3 shows a 

high-level overview of the customized CNN architecture. A CNN model was built, consisting of 19 layers 

and these layers include convolutional, pooling, and fully connected layers. We used the complete architecture 

of CNN with dense layers to obtain the results of CNN as a prediction model. However, when applying our 

proposed model CNN-RF, dense layers were removed from CNN architecture to use CNN as a feature 

extraction method and RF as a prediction tool. The image size of the HAM10000 dataset is 28 × 28 with a 

depth of 3 to speed up the process. Table 1 shows the hyperparameters of the proposed hybrid model (CNN-

RF). After many experiments, we found that the best Learning rate for CNN is 0.001 and the best optimizer 

is Adam optimizer. To fit the CNN model, we used different batch sizes (16, 32, 64, 128, and 256), and the 

results according to each batch size will be reported later in this paper. In the classification phase, features 

that were extracted from the CNN model are fed to RF as an input. Then RF model makes predictions for 

these features. We used no. The estimator for RF is 50. The output of the RF model is one of the seven 

classes of the HAM10000 dataset according to the given image. 
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Figure 3. A high-level overview of CNN Architecture. 

 

Table 1. Hyperparameters of the proposed model. 

Parameter value 

Filter_size (3,3) 

Pool_size (2,2) 

Loss function for CNN Categorical Cross-entropy 

Epochs 30 

Batch-size 16,32,64,128,256 

Optimizer Adam 

Learning_rate 0.001 

Number of CNN layers 16 layers 

Estimators for RF 50 (random_state=0) 

  

3 | Results and Discussion 

Table 2 shows the number of images in each class after applying each method of oversampling methods. For 

simplicity, each class was represented with a digit number as follows: (akiec was represented with 0, bcc was 

represented with 1, bkl was represented with 2, df was represented with 3, nv was represented with 4, vasc 

was represented with 5, melanoma was represented with 6). Figure 4 shows the HAM10000 dataset after 

applying different oversampling methods. The authors faced the problem of memory being filled because the 

number of images is large and after applying different oversampling methods, the number of images become 

very large so, a high memory size is required. As shown in Table 2 and Figure 4, oversampling methods can 

achieve a balance between all classes of the dataset. Tables (3-7) show different accuracy measures of the 

customized CNN and the proposed hybrid model CNN-RF with different batch sizes. The accuracy measures 

include accuracy, precision, recall, F1-score, and area under the ROC curve (AUC). The results of CNN were 

obtained when we used CNN as a prediction method for the HAM10000 dataset and compared these results 

with the proposed CNN-RF. As shown from Table 3 when the batch size is 16, CNN can achieve the highest 

accuracy with the SMOTE-ENN method and obtained 0.9728 accuracy and AUC 0.9980. According to 

CNN-RF can achieve the highest accuracy with the random oversampling method and get 0.9822 accuracy 

and AUC 0.9998. Figure 5 shows accuracy and loss curves for CNN with SMOTE-ENN when batch size is 

16 for 30 epochs. As seen from the Figure, CNN is capable of getting better accuracy in a small number of 

epochs. Roundly from epoch 5 to epoch 30, CNN can obtain higher accuracy and achieve a small loss for 

diagnosing seven classes of the dataset which ensures the consistency of our customized CNN. Figure 6 

shows the confusion matrix and ROC curve for CNN with SMOTE-ENN when the batch size is 16. Figure 

7 shows the confusion matrix and ROC curve for CNN-RF with Random-versampling when the batch size 

is 16. The figures show the ability of our customized CNN and the hybrid CNN-RF to classify seven classes 

of the dataset. The confusion matrix shows that CNN-RF surpasses CNN in classifying more no. True images. 

Also, ROC curves show the ability of CNN and CNN-RF to get better AUC for each class which is nearest 
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to 1. CNN got 1 of AUC for all classes except for class 4 got 0.99 for AUC but CNN-RF got 1 of AUC for 

all classes. 

Table 2. Number of images in each class for oversampling methods. 

class original 
Random-

Oversampling 
SMOTE 

SMOTE-

ENN 

SMOTE-

TOMEK 
ADASYN 

0 327 6705 6705 6705 6705 6724 

1 514 6705 6705 6704 6705 6641 

2 1099 6705 6705 6592 6705 6886 

3 115 6705 6705 6705 6705 6691 

4 6705 6705 6705 3498 6705 6705 

5 142 6705 6705 6705 6705 6730 

6 1113 6705 6705 6592 6705 6810 

Total 10015 46935 46935 43501 46935 47187 

 

 
(a)                                                                                  (b) 

 
(c)                                                                                (d) 

 
(e)                                                                                     (f) 

Figure 4. HAM10000 dataset after applying oversampling methods. (a) Original dataset, (b) Random oversampling, (c) 

SMOTE, (d) SMOTE-ENN, (e) SMOTE-TOMEK, and (f) ADASYN. 
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Table 3. Accuracy measures of CNN and CNN-RF (Batch Size=16). 

Model  Accuracy Precision  Recall  F1-score AUC 

CNN(Random-Oversampling) 0.9622 0.96 0.96 0.96 0.9972 

CNN(SMOTE) 0.9469 0.95 0.95 0.95 0.9949 

CNN(SMOTE-ENN) 0.9728 0.97 0.97 0.97 0.9980 

CNN(SMOTE-TOMEK) 0.9377  0.94 0.94 0.94 0.9944 

CNN(ADASYN) 0.9378 0.94 0.94 0.94 0.9944 

CNN-RF(Random-Oversampling) 0.9822 0.98 0.98 0.98 0.9998 

CNN-RF(SMOTE) 0.9354 0.94 0.94 0.93 0.9937 

CNN-RF(SMOTE-ENN) 0.9657 0.97 0.97 0.97 0.9976 

CNN-RF(SMOTE-TOMEK) 0.9371 0.94 0.94 0.94 0.9943 

CNN-RF(ADASYN) 0.9378 0.94 0.94 0.94 0.9943 

 

 
Figure 5. Accuracy and loss curves for CNN with SMOTE-ENN when batch size is 16. 

 

 
Figure 6. Confusion matrix and ROC curve for CNN with SMOTE-ENN when batch size is 16. 
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Figure 7. Confusion matrix and ROC curve for CNN-RF with Random-Oversampling when batch size is 16. 

 

Table 4 shows accuracy measures when batch size is 32. As shown from the table, CNN can achieve the 

highest accuracy with the SMOTE-ENN method and obtained 0.9760 accuracy and AUC 0.9985. According 

to the hybrid model, CNN-RF can achieve the highest accuracy with the random oversampling method and 

get 0.9836 accuracy and AUC 0.9998. Figure 8 shows the confusion matrix and ROC curve for CNN with 

SMOTE-ENN when batch size is 32. Figure 9 shows the confusion matrix and ROC curve for CNN-RF 

with Random-Oversampling when batch size is 32. As seen from the figures, our customized CNN and the 

hybrid CNN-RF can classify seven classes of the dataset. The confusion matrix shows that CNN-RF exceeds 

CNN in classifying more no. True images. Also, the ROC curve shows the ability of CNN and CNN-RF to 

get 1 of AUC for all classes. 

 

Table 4. Accuracy measures of CNN and CNN-RF (Batch Size=32). 

 

 

Model  Accuracy Precision  Recall  F1-score AUC 

CNN(Random-Oversampling) 0.9655 0.97 0.97 0.96 0.9973 

CNN(SMOTE) 0.9473 0.95 0.95 0.95 0.9958 

CNN(SMOTE-ENN) 0.9760 0.98 0.98 0.98 0.9985 

CNN(SMOTE-TOMEK) 0.9527 0.95 0.95 0.95 0.9960 

CNN(ADASYN) 0.9476 0.95 0.95 0.95 0.9955 

CNN-RF(Random-

Oversampling) 

0.9836 0.98 0.98 0.98 0.9998 

CNN-RF(SMOTE) 0.9426 0.94 0.94 0.94 0.9952 

CNN-RF(SMOTE-ENN) 0.9690 0.97 0.97 0.97 0.9981 

CNN-RF(SMOTE-TOMEK) 0.9441 0.95 0.94 0.94 0.9951 

CNN-RF(ADASYN) 0.9485 0.95 0.95 0.95 0.9957 
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Figure 8. Confusion matrix and ROC curve for CNN with SMOTE-ENN when batch size is 32. 

 
Figure 9. Confusion matrix and ROC curve for CNN-RF with Random-Oversampling when batch size is 32. 

Table 5 shows accuracy measures when the batch size is 64, as shown from the table, CNN can achieve the 

highest accuracy with the SMOTE-ENN method and obtained 0.9767 accuracies and AUC 0.9983. According 

to the hybrid model, CNN-RF can achieve the highest accuracy with the random oversampling method and 

get 0.9878 accuracy and 0.9999 AUC. Figure 10 shows the confusion matrix and ROC curve for CNN with 

SMOTE-ENN when batch size is 64. Figure 11 shows the confusion matrix and ROC curve for CNN-RF 

with Random-Oversampling when batch size is 64. The figures show that CNN and CNN-RF can obtain 

better results for seven classes of the dataset. The confusion matrix shows that CNN-RF surpasses CNN in 

classifying more no. True images. Also, the ROC curve shows the ability of CNN and CNN-RF to get better 

AUC for each class which is nearest to 1. CNN got 1 of AUC for all classes except for class 4 got 0.99 for 

AUC but CNN-RF got 1 of AUC for all classes. 

Table 5. Accuracy measures of CNN and CNN-RF (Batch Size=64). 

Model Accuracy Precision Recall F1-score AUC 

CNN(Random-Oversampling) 0.9676 0.97 0.97 0.97 0.9981 

CNN(SMOTE) 0.9560 0.96 0.96 0.96 0.9965 

CNN(SMOTE-ENN) 0.9767 0.98 0.98 0.98 0.9983 

CNN(SMOTE-TOMEK) 0.9554 0.96 0.96 0.95 0.9966 

CNN(ADASYN) 0.9549 0.96 0.95 0.95 0.9966 

CNN-RF(Random-

Oversampling) 
0.9878 0.99 0.99 0.99 0.9999 

CNN-RF(SMOTE) 0.9529 0.95 0.95 0.95 0.9959 

CNN-RF(SMOTE-ENN) 0.9768 0.98 0.98 0.98 0.9986 

CNN-RF(SMOTE-TOMEK) 0.9521 0.95 0.95 0.95 0.9958 

CNN-RF(ADASYN) 0.9512 0.95 0.95 0.95 0.9966 
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Figure 10. Confusion matrix and ROC curve for CNN with SMOTE-ENN when batch size is 64. 

 
Figure 11. Confusion matrix and ROC curve for CNN-RF with Random-Oversampling when batch size is 64. 

Table 6 shows accuracy measures when the batch size is 128, as shown from the table, CNN can achieve the 

highest accuracy with the SMOTE-ENN method and obtained 0.9782 accuracy and AUC 0.9988. According 

to the hybrid model, CNN-RF can achieve the highest accuracy with the random oversampling method and 

get 0.9844 accuracy and AUC 0.9998. Figure 12 shows the confusion matrix and ROC curve for CNN with 

SMOTE-ENN when batch size is 128. Figure 13 shows the confusion matrix and ROC curve for CNN-RF 

with Random-Oversampling when batch size is 128. As seen from the figures, CNN and CNN-RF can 

diagnose HAM10000 dataset classes effectively. The confusion matrix shows that CNN-RF surpasses CNN 

in classifying more no. True images. However, the ROC curve shows that CNN and CNN-RF have equal 

ability in getting 1 of AUC for all classes. 

Table 6: Accuracy measures of CNN and CNN-RF (Batch Size=128). 

Model Accuracy Precision Recall F1-score AUC 

CNN(Random-Oversampling) 0.9711 0.97 0.97 0.97 0.9983 

CNN(SMOTE) 0.9583 0.96 0.96 0.96 0.9968 

CNN(SMOTE-ENN) 0.9782 0.98 0.98 0.98 0.9988 

CNN(SMOTE-TOMEK) 0.9510 0.95 0.95 0.95 0.9961 

CNN(ADASYN) 0.9566 0.96 0.96 0.96 0.9958 

CNN-RF(Random-

Oversampling) 
0.9844 0.98 0.98 0.98 0.9998 

CNN-RF(SMOTE) 0.9560 0.96 0.96 0.96 0.9968 

CNN-RF(SMOTE-ENN) 0.9784 0.98 0.98 0.98 0.9987 

CNN-RF(SMOTE-TOMEK) 0.9522 0.95 0.95 0.95 0.9962 

CNN-RF(ADASYN) 0.9515 0.95 0.95 0.95 0.9959 
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Figure 12. Confusion matrix and ROC curve for CNN with SMOTE-ENN when batch size is 128. 

 
Figure 13. Confusion matrix and ROC curve for CNN-RF with Random-Oversampling when batch size is 128. 

Table 7 shows accuracy measures when the batch size is 256, as shown from the table, CNN can achieve the 

highest accuracy with the SMOTE-ENN method and obtained 0.9820 accuracies and AUC 0.9988. According 

to the hybrid model, CNN-RF can achieve the highest accuracy with the random oversampling method and 

get 0.9865 accuracy and AUC 0.9998. Figure 14 shows the confusion matrix and ROC curve for CNN with 

SMOTE-ENN when batch size is 256. Figure 15 shows the confusion matrix and ROC curve for CNN-RF 

with Random-versampling when batch size is 256. The figures show the ability of CNN and CNN-RF to 

classify seven classes of the dataset. The confusion matrix shows that CNN-RF surpasses CNN in classifying 

more no. True images. However, the ROC curve shows that CNN and CNN-RF have equal capability in 

getting 1 of AUC for all classes. 

Table 7. Accuracy measures of CNN and CNN-RF (Batch Size=256). 
Model Accuracy Precision Recall F1-score AUC 

CNN(Random-Oversampling) 0.9706 0.97 0.97 0.97 0.9979 

CNN(SMOTE) 0.9637 0.96 0.96 0.96 0.9975 

CNN(SMOTE-ENN) 0.9820 0.98 0.98 0.98 0.9988 

CNN(SMOTE-TOMEK) 0.9630 0.96 0.96 0.96 0.9972 

CNN(ADASYN) 0.9593 0.96 0.96 0.96 0.9971 

CNN-RF(Random-Oversampling) 0.9865 0.99 0.99 0.99 0.9998 

CNN-RF(SMOTE) 0.9549 0.96 0.95 0.95 0.9966 

CNN-RF(SMOTE-ENN) 0.9788 0.98 0.98 0.98 0.9989 

CNN-RF(SMOTE-TOMEK) 0.9567 0.96 0.96 0.96 0.9970 

CNN-RF(ADASYN) 0.9583 0.96 0.96 0.96 0.9972 
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Figure 14. Confusion matrix and ROC curve for CNN with SMOTE-ENN when batch size is 256. 

 
Figure 15. Confusion matrix and ROC curve for CNN-RF with Random-Oversampling when batch size is 256. 

As seen from the results, the proposed hybrid model CNN-RF can deliver the best results for the HAM10000 

dataset with the random oversampling method and can obtain the value 1 of AUC for all classes with different 

batch sizes. According to CNN results, the best oversampling method for CNN is SMOTE-ENN which can 

deliver better results than other methods. For batch size 16, the worst oversampling method for CNN is 

SMOTE-TOMEK with an accuracy of 0.9377 and AUC of 0.9944 but, for CNN-RF the worst oversampling 

method is SMOTE with an accuracy of 0.9354 and AUC of 0.9937. For batch size 32, the worst oversampling 

method for CNN is SMOTE with an accuracy of 0.9473 and AUC of 0.9958, and also for CNN-RF the worst 

oversampling method is SMOTE with an accuracy of 0.9426 and AUC of 0.9952. For batch size 64, the worst 

oversampling method for CNN is ADASYN with an accuracy of 0.9549 and AUC 0.9966, and also for CNN-

RF the worst oversampling method is ADASYN with an accuracy of 0.9512 and AUC 0.9966. For batch size 

128, the worst oversampling method for CNN is SMOTE-TOMEK with an accuracy of 0.9510 and AUC 

0.9961 but for CNN-RF the worst oversampling method is ADASYN with an accuracy of 0.9515 and AUC 

0.9959. For batch size 256, the worst oversampling method for CNN is ADASYN with an accuracy of 0.9593 

and AUC 0.9971 but for CNN-RF the worst oversampling method is SMOTE with an accuracy of 0.9549 

and AUC 0.9966. Table 8 and Table 9 summarize all the important previous results for CNN and CNN-RF. 

As shown from the table, when batch size is increased, the accuracy of the CNN model is increased also 

which ensures the model stability and how batch size can affect the performance model.  
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Table 8. CNN with SMOTE-ENN with different batch sizes. 

 

            

  

 

 
Table 9. CNN-RF with Random-Oversampling with different batch sizes. 

 
 
 
 
 
 
 
 

 

4 |Sensitivity Analysis and Comparison 

Among all the previous results of this paper, the proposed hybrid model CNN-RF is the best with a random 

oversampling method for different batch sizes. To ensure the consistency of our proposed model, we applied 

the same model for image size 80 × 80 instead of image size 28 × 28 which was the original image size for 

our selected dataset. Table 10 shows the accuracy measures of CNN-RF (image size 80 × 80) with different 

batch sizes. As seen from the table, CNN-RF with batch size 128 gives the highest accuracy 0.9888, AUC 

0.9999, and 0.99 for each precision, recall, and F1-score than other models. Figure 16 shows the confusion 

matrix for CNN-RF with random oversampling with different batch sizes. This figure shows that CNN-RF 

can predict the most no. True images. Figure 17 shows the ROC curve for CNN-RF with random 

oversampling with different batch sizes. Also, this figure ensures the ability of our proposed model to achieve 

AUC 1 for all classes of the dataset for all batch sizes. These results prove that our proposed hybrid model 

CNN-RF can achieve more satisfactory results for all measures and all batch sizes despite scaling image size 

to 80 × 80 which improves the ability of our proposed model to obtain the best and more satisfactory results 

for the HAM10000 dataset. 

Table 10: Accuracy measures of CNN-RF with Random-Oversampling (image size 80 × 80) for different batch sizes. 

Model 
Accurac

y 

Precisio

n 
Recall F1-score AUC 

CNN-RF                                       batch size=16 

batch size=32 

batch size=64 

batch size=128 

batch size=256 

0.9885 

0.9847 

0.9881 

0.9888 

0.9815 

0.99 

0.98 

0.99 

0.99 

0.98 

0.99 

0.98 

0.99 

0.99 

0.98 

0.99 

0.98 

0.99 

0.99 

0.98 

0.9998 

0.9998 

0.9999 

0.9999 

0.9999 

 

 

Batch size Accuracy 

16 0.9728 

32 0.9760 

64 0.9767 

128 0.9782 

256 0.9820 

Batch size Accuracy 

16 0.9822 

32 0.9836 

64 0.9878 

128 0.9844 

256 0.9865 
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Figure 16. Confusion matrix for CNN-RF with Random-Oversampling with different batch sizes. 



Towards Higher Accuracy in Diagnosis of Skin Cancer: An Adaptive CNN-RF Model for Diagnosis … 

 

06

 

  

 

 

 
Figure 17.  ROC curve for CNN-RF with Random-Oversampling with different batch sizes. 

To show the ability of our proposed hybrid model against the literature, we compared it with models of more 

recent papers. The selected papers for comparison were for the classification of the HAM10000 dataset. Table 

11 shows the comparison of the proposed model with recent existing techniques. As seen from the table, the 

proposed hybrid model CNN-RF can obtain the highest accuracy 98.88%, and beat other models. 
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Table 11. Comparison of the proposed model with recent existing techniques on the HAM10000 dataset. 
Ref# Year Method  Accuracy (%) 

[33] 2021 Shifed MobileNetV2 81.90 

[34] 2021 MASK RCNN + DenseNet + LS-SVM 88.50 

[35] 2021 ResNet-50 + Naïve Bayes 85.50 

[36] 2022 EW-FCM+wide-shufenet 84.80 

[37] 2022 CNN 95.18 

[38] 2022 XAI/IML explanation techniques + CNN 80.00 

[39] 2022 CNN, AlexNet, Vgg-16, Vgg-19 92.25 

[40] 2023 InceptionResnet-V2 91.30 

[41] 2023 EfficientNET-B1 84.30 

[16] 2023 Mobilenetv2-DeepLabv3+ 92.01 

[42] 2023 effective data augmentation + Inception-Resnet-v2 95.09 

[43] 2023 wavelet transform-based deep residual neural network 

(WT-DRNNet) 

95.73 

Proposed  2024 CNN-RF 98.88 

 

5 |Conclusion and Future Work 

In this paper, a new hybrid model based on a convolutional neural network and random forest algorithm is 

proposed for detecting and classifying skin cancer images. The dataset utilized for this study is based on the 

HAM10000 dataset. The dataset was first preprocessed effectively and different oversampling methods were 

applied to determine the best method. Then, features of the preprocessed dataset were extracted using a 

customized convolutional neural network. Finally, these features were classified into seven classes using a 

random forest algorithm. The effective hyper-parameters for CNN and RF were detected besides different 

batch sizes and image sizes were implemented. The proposed model (CNN-RF) with random oversampling 

method can achieve 98.88 % accuracy, 0.99 precision, 0.99 for recall, 0.99 for F1-score, and 0.9999 for AUC. 

The proposed model was compared with our customized CNN as a prediction tool and with the most recent 

existing work on the same dataset and proved its ability to achieve better accuracy than other models. The 

results of the proposed model show that it can effectively detect and classify seven classes of the HAM10000 

dataset.  

According to future trends, there are many algorithms aiming to aid us in understanding how machine learning 

models make predictions. However, many researchers have applied explainable artificial intelligence and 

shown its importance in providing effective explanations for predictions. Additionally, different techniques 

for feature selection can be used to develop models, such as wrapper and filter methods. Also, they can replace 

the random forest algorithm in our model with other machine learning algorithms and achieve more 

satisfactory results. In addition, they can use the proposed model for other datasets and obtain more 

satisfactory results. 
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