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1 |Introduction  

The rapid expansion of global networks and their associated technological developments led to several 

internet security issues. Various security threats raised due to uncontrolled access of information posing 

challenges to network security and intrusion detection effectiveness. To prevent the network from potential 

intrusions, IDSs arises as a tool to ensure network confidentiality, integrity, and availability by monitoring 

network traffic [1],[2].  

Recently IoT networks has been adapted by several organizations to automate and optimize their business, it 

is considered as one of the fastest growing technologies. A new security challenges arises due to the 

continuous advancement of IoT technology. The connection between IoT devises usually takes place through 

a wireless network, such an environment easily enable attacker to gain illegal access to network devices. 

Traditional security techniques such as encryption, authentication, access control, network security, and 

application security were used to address IoT security challenges, however those mechanisms have been 

proven their inefficiency to meet environments diverse contexts, however targeting a specific security threats 

by implementing a security measurements against it can be more effective. Recently a new sophisticated attack 

have been arise, therefor exploring more effective IDSs is the research main goal. IDSs are potential methods 
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for tracking IoT environments against attacks which present at network level. The IDS analyses the network 

data packets while offering a real-time responses considering conditions such as low energy, low process 

capacity, rapid response, and massive amounts of data processing [3],[4]. Most of existed IDSs have various 

drawbacks including limited flexibility and scalability[5]. 

One of most common issues that impact ID techniques is availability of labeled datasets, although they are 

costly, they provide higher accuracy to IDS. Based on the availability of labeled data, the associated learning 

strategy applied to achieve higher detection accuracy, on the other hand utilizing unsupervised learning 

methods is necessary when no labeled data is available even if they result in lower accuracy and higher false 

positives rates. Most of present IDS using various machine learning approaches to detect normal and 

abnormal traffic in systems and networks, however they still suffer from higher false positive and lower 

detection rates. To deal with various types of intrusions and security challenges in varied environments, DL 

have been adapted as a subset of ML. DL methods are capable of modeling complicated data architectures 

to execute varied non-linear data transformations and recognize patterns in data using several architectures. 

ANNs are the basic architecture of DL models, they process data using several hidden layers. Various deep 

learning networks have been deployed in different domains and intrusion detection contexts, such as DBNs, 

DNNs, CNNs, Generative adversarial networks GANs, and RNNs. Supervised, and semi-supervised and 

unsupervised learning techniques can be utilized. Furthermore, deep learning promotes incremental learning 

and can extract novel features from training data samples [6]. 

2 | Review Objectives and Questions 

This review provides a deep understanding of deep learning approaches used in IoT intrusion detection by 

investigating five different research questions that are interconnected: 

RQ1: What security challenges and attack vectors distinguish IoT environments from traditional network 

infrastructures, and how do these differences shape defensive requirements? 

RQ2: Which deep learning architectures have employed for intrusion detection, and what their advantages 

and limitations? 

RQ3: How have researchers adapted deep learning methods for IoT intrusion detection with resource 

constraints and architectural considerations? 

RQ4: How do deep learning-based intrusion detection approaches evaluated under controlled experimental 

conditions? 

RQ5: What critical research gaps, challenges, and open directions exist for advancing deep learning-based 

intrusion detection? 

This review presents the following: 

• Surveys deep learning based approaches to detect intrusions in IoT systems by examining various 

architectures, and performance metrics across fifty peer reviewed studies. 

• Provides a comparative analysis of the performance of multiple deep learning architectures. 

• Assesses the difficulties associated with of intrusion detection systems in IoT environment.  

• Classifies the research gaps in the field of deep learning based IoT intrusion detection.  

Section 3 describes the systematic review methodology, Section 4 describes the IoT foundation and reviews 

relevant survey literature, Section 5 analyzes the deep learning architectures employed for detecting intrusions, 

Section 6 contains an experimental evaluation of the performance of the deep learning approaches, Section 

7combines the results of the study, implementation challenges, and research paths, Section 8 concludes and 

summarize the review by providing findings and recommendations. 
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3 | Methodology  

We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses PRISMA 2020, which allows 

to conduct a systematic literature reviews. PRISMA has become an international standard for systematic 

reviews in all scientific areas and it promotes the quality of reports. The review process includes the 

formulation of a research question, the systematic search for studies, and the selection of studies according 

to determined procedure. 

3.1 | Review Protocol and Questions 
A systematic review protocol created before literature search to clearly define the aims of the review and 

include details on specific inclusion and exclusion criteria, as well as search methods and data extraction 

techniques.  

3.2 |Information Sources and Search Strategy 
Search strategy was implemented across multiple academic databases and digital libraries to identify relevant 

peer-reviewed publications. Information sources included: 

• IEEE Xplore Digital Library 

• ACM Digital Library 

• Elsevier ScienceDirect 

• Springer Link 

• MDPI Publishing Platform 

• Wiley Online Library 

• Google Scholar 

We include publications that focused on recent advances in deep learning-based intrusion detection. The 

search strategy uses combination of keywords organized using Boolean operators: 

• Intrusion Detection: ("Intrusion detection" OR "anomaly detection" OR "network security" OR "cyber 

threat detection" OR "attack detection") 

• Deep Learning: ("deep learning" OR "neural network" OR "convolutional neural network" OR "CNN" OR 

"recurrent neural network" OR "RNN" OR "LSTM" OR "autoencoder" OR "deep neural network" 

OR "DNN") 

• IoT: ("Internet of Things" OR "IoT" OR "Industrial IoT" OR "IIoT" OR "smart devices" OR "edge 

computing" OR "IoT networks") 

• The complete search string combined these clusters as follows: 

 (Cluster 1) AND (Cluster 2) AND [(Cluster 3) OR "systematic review" OR "literature 

review" OR "survey" 

3.3| Eligibility Criteria 

Studies were selected by defined criteria to ensure that studies chosen were relevant to the study objectives. 

Inclusion Criteria: 

• Peer reviewed journal articles, conference papers, and systematic reviews. 

• Deep learning-based studies on intrusion detection, anomaly detection, and other cybersecurity applications 

• Studies that addressed IoT security, Network Intrusion Detection, Other areas of Cybersecurity 

• Publications that included details on the Deep Learning architecture, data sets used, and evaluation metrics 

applied in the study 

• Publication in high-quality, peer reviewed journals/venues 

• Study articles written in English language 

Exclusion Criteria: 

• Preprint publications, Technical Reports, White Papers, Thesis Documents  

• Publications prior to 2020 

• Traditional studies which did not include Deep Learning component 

• Non-Intrusion Detection Studies, Non-Network Security Studies, Non-Cybersecurity Studies 

• Duplicate Publications and Extended Versions of publications  
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• Predatory Journals/Venues that lack a Rigorous Peer Review Process. 

3.4| Study Selection Process 
Study selection followed multi-stage screening process: 

• Identification: Initial database searches as we aggregated search results from all databases and imported 

them into reference management software for processing. 

• Duplicate Removal 

• Title and Abstract Screening 

• Full-Text Assessment 

• Final Inclusion: Studies satisfying all eligibility criteria after full-text assessment were included in the 

systematic review  

3.5| Data Collection and Extraction 
We developed method for extracting data to ensure that a data were extracted from the studies: 

Bibliographic Data Elements: 

• Authors and publication date 

• Title 

• Venue/Publisher 

• Study Type  

Data Elements Describing Methodology: 

• Deep Learning Architecture 

• Network Layers, Activation Functions, Optimization Algorithms 

• Training Procedures, Hyperparameters Configured 

Context of Application: 

• Target Environment  

• Layer of IoT Addressed  

• Types of Attacks Detected 

• Data Elements Relating to Datasets and Evaluation 

• Evaluation Metrics  

• Results of Performance and Comparative Analyses 

Data Elements Relating to Quality Indicators: 

• Experimental Design 

• Validation Methods  

• Code Availability 

    4| Foundational Concepts and Background 

4.1| Layered Architecture Models 

Several IoT architectures are proposed by researches in the literature. Architectures such as the 3-layer 

architecture which comprise the perception or device, network or transmission and application layers. The 

ITU recommended Reference Model for IoT which constructed from four layers device layer, network layer, 

application support layer, service support and application layer. IoT-A Architectural Reference Model 

proposed by FP7 which is describe the modeling of IoT business process management, IoT services, cross-

service organization and virtual entities, information and functional aspects. An IoT Reference Architecture 

developed by WSO2 that comprise five layers including Client/external communications, Event processing 

and analytics, Aggregation/bus layer, Relevant transports, Devices. And An IoT Reference Architecture 

suggested by Cisco which is seven layered IoT reference model [7].  
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We aligned to Cisco IoT seven-layered reference model which is present in Figure 1 to facilitate more about 

model layers, protocols, IoT common attacks, and IDSs. 

Figure 1 CISCO IoT seven-layer layer reference model. 

 

4.2| Security Challenges in IoT Environments 

IoT deployments encounter several security limitations stem from the fundamental differences between IoT 

and traditional networks. The security issues caused by several characteristics, including [8]: 

• Limited Resources, in which IoT devices are constrained by available resources 

• Devices diversity, IoT networks consist of several devices and applications 

• Poor Security standards 

• Changing Network topologies and architectures are constantly. 

• Large Attack Surfaces across Physical, Network, and Application Layers. 

4.3| Review of Related Research  

In this literature, we collect some surveys to provide an overview of IDS in several domains including IoT, 

CTI mining, communication networks, network traffic analysis and metaverse. Most of the listed surveys and 

literature reviews focus on IDS in IoT representing the main focus of the literature.  This section provide a 

comparative analysis takes place in Table 1 to compare the existing survey papers based on some criteria 

encompassing focus area of study, review methodology, existence of experimental study, taxonomy, survey 

key findings, and future directions. In the following we will discuss the main contribution of the existing 

surveys: 

Nuaimi, Fourati, and Hamed [9] conducted a PRISMA based SLR on the recent ML and DL approaches for 

IDS in IIoT. The survey proposed a taxonomy classify the collected papers based on six categories including 

placement strategy, detection method, validation metric, IIoT use case, and ML techniques. As a main finding 

this research stated that, most of publications relays on centralized placement strategies for intrusion detection, 

while employing a hybrid strategy integrating centralizes and distributed placement strategies for ID will 

achieve better performance. 
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The survey presented by Lee et al. [6] provides a comprehensive analysis on DL- based IDS by building a 

taxonomy to classify the deep learning-based IDS schemes based on the utilized DL network. The survey also 

propose prior survey issues in the context of deep learning-based IDS such as limited application of blockchain 

technology, dependency on general network datasets without paying attention to the new emerging 

cyberattacks and imbalanced datasets. As a future direction the authors of this work recommends using online 

and incremental learning for mitigating real-time intrusion detection. 

 Asharf et al. [7] provides a literature review on ML and DL approaches for IDS in IoT networks, also surveys 

various dataset related IoT security research. The author extensively discussed the concept of IoT presenting 

its architecture, protocols, systems vulnerabilities, and protocol-level attacks. This work provide a 

comprehensive summary for challenges encountered by IoT environments and networks and suggested 

solutions, highlighting IDS based ML and DL methods. 

 Wang et al. [10] briefly reviewed IDS and how they can be employed for detecting and classifying cyber-attacks 

using techniques such as ML, DL, and SWEVO. The survey also investigated IDS taxonomy, feature 

engineering techniques, IDS based computational intelligent methods, datasets, performance metrics and a 

wide range of application for IDS. However as the previous work, the author focused on using representative 

benchmark datasets as it impacts the quality of selected feature and then detection rates, also limitation of each 

dataset discussed in the scope of the literature. As a future direction the review proposed using a hybrid 

approach integrating ML and DL methods with SWEVO techniques to enhance intrusion detection efficiency. 

The authors of this work Chou and Jiang [11] introduce a taxonomy of data-driven network intrusion detection 

algorithms based on challenges to research studies and technical methods and analyzing public dataset within 

the proposed taxonomy. One of the survey findings is that future research should focus on massive network 

data, streaming and dynamic data, and real-world network data collection and availability. Also the survey 

concluded that there is a lack of real-world network data, particularly from consumer networks, that can affect 

the performance of model in simulated network within real-world network traffic data. 

Sun et al [12] provides a survey covering cutting-edge CTI mining researches which reveals its ability for 

improving cyberattacks defense capabilities. This work classifying the existing work in this area of study based 

on the objective of gathering CTI knowledge emphasizing the used approaches within the prior studies. Based 

on the proposed classification the survey discusses the existing work focusing on cybersecurity entities and 

events, cyberattack tactics and processes, hacker profiles, and signs compromise, vulnerability exploits, 

malware deployment, and threat hunting. Additionally the literature reviewed existing challenges and potential 

future directions. 

Recently, Awadallah et al. [13] provides an overview over cybersecurity attacks related to data, identity, user 

privacy, digital wellbeing, legal regulations, and NFTs using the metaverse enabling technologies. The survey 

analyzes several AI techniques to mitigate cyber security in the metaverse, including user authentication, 

intrusion detection systems, and blockchain security. As a main finding this work incorporates several 

biometrics along with EEG and ECG to give liveness checks and validation of NFT transactions and users in 

the metaverse. Moreover investigating several AI approaches for intrusion detection in the metaverse 

highlighting their importance in securing blockchain and NFT transactions by detecting fraud, ensuring smart 

contract security, and verifying content. 

Kheddar et al. [14] provide an analysis of how RL-based intrusion detection systems automate real-time 

detection, reduce false positives, and improve capabilities. Based on comparisons with previous surveys the 

authors extends their research to cover various areas of study including IoT, ICSs, cloud computing, smart 

grids, and various other domains. The survey proposed a taxonomy facilitating RL and DRL techniques and 

application particularly IDSs. Also covering important issues include adaptation to dynamic situations, 
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scalability, interpretability, and robustness against adversarial attacks. Additionally, the survey suggests 

hybridizing classical IDSs with RL-based IDSs addressing energy efficiency and using LLMs. 

Nascita et al. [15] extensively reviewed XAI approaches in NTA including traffic classification and prediction, 

classifying cyberattacks and intrusion detection, covering methodologies, applications, requirements, issues 

and future directions. The survey discusses the pivotal role of XAI in improving network security, performance 

and reliability. Moreover challenges and gaps arises from implementing XAI in NTA. 

Lampe and Meng [16] systematically reviewed IDSs in automotive domain ranging from inter-vehicles network 

to intra-vehicles network facilitating applied methodologies and their performance rates in this domain. The 

authors of this work comprehensively cover various methodologies including non-learning, traditional ML, 

DL, and blockchain protected methods, also they provide a comparative analysis to their performance 

according to several evaluation metrics. The articles also stated open challenges to automotive IDSs such as 

false positive rate data and training requirements, detection accuracy and latency against consumed resources 

and critical challenges with their subsequent solutions.  

The survey paper provided by Zipperle et al. [17] reviewed PIDS, highlighting the drawbacks of traditional 

IDS to cope with prevalence of sophisticated attacks due to their high false alarm rates. The survey discusses 

several issues to PIDS including privacy concerns, run time overhead, scalable graph summarization techniques 

inadequacy and insufficiency of real-world benchmark dataset. Also the survey proposed future directions 

focused on maintaining privacy while capturing data provenance, reducing storage overhead using scalable 

graph summarization methods utilize lossless and lossy reduction techniques and utilizing real-time intrusion 

detection methods.    

The article introduced by Halvorsen et al. [18] provide a mapping study and a review analysis on how GMLMs 

can be employed to address ML based IDSs issues. Also this literature offer three areas where GMLMs can be 

applicable to overcome issues with intrusion detection including penetration testing, GMLMs as IDSs and 

supplementing datasets. The authors of the work successfully proven the effectiveness of GMLMs in detecting 

attacks that can be ignored by ML based IDSs, moreover introducing new minority classes to the dataset and 

then enhancing the performance of IDSs which trained on those new datasets. As a key finding the article 

stated that GMLMs can perform better than other traditional methods for intrusion detection. 

Table 1 Comparetive analysis of the existing survey papers 

Ref year  Focus area Review 
methodology 

Exper
iment
al 
study  

Taxon
omy 

Key findings  Future 
directio
ns 

[9] 2023 IIOT 
( 
Perception 
layer, 
network 
layer, data 
processing 
layer, and the 
application 
layer) 

PRISMA No  No  Promising performance 
of hybrid IDS placement 
strategy over other 
strategies , especially by 
integrating FL centralized 
placement strategy with 
Blockchain distributed 
placement strategy 

Yes  

[6] 2021 IOT(data 
processing 
layer), SDNs, 
vehicular 
networks, 
and general 
environments 

A survey-based 
systematic 
approach 

No  Yes  Effectiveness of DL in 
feature extraction and 
classification stages of 
IDS. 
Highlighting prior 
researches issues such as: 
(blockchain limited 
usage, dependency on 

Yes  
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general network datasets 
and misuse of hybrid 
schemes, etc.) 

[7] 2020 IOT 
( 
Perception 
layer, 
network 
layer, and the 
application 
layer) 

None  No  Yes  Challenges encountered 
by IOT NIDS such as 
(features limitations with 
public dataset, high false 
alarms rates and 
complexity of ML and 
DL NIDS, etc.). 
Proposing solutions such 
as (providing high quality 
datasets and use of 
ensemble ML and DL 
over individual ML 
algorithm, etc.) 

Yes  

[10] 2022 IOT 
( 
Perception 
layer, 
network 
layer, and the 
application 
layer) 

A survey-based 
approach 

No  Yes  Promising performance 
of ML, DL, and SWEVO 
in IDS. 
Challenges:  
(High False Alarms and 
Zero-day Attacks 
handling, etc.) 
and future directions 
such as: 
(Incorporating 
representative datasets 
for efficient feature 
extraction and enhancing 
ML and DL methods by 
hybridizing them with 
SWEVO, etc.) 

Yes  

[11] 2022 IOT 
( 
Perception 
layer, 
network 
layer, and the 
application 
layer) 

None  No  Yes  Classifying data-driven 
network intrusion 
detection techniques 
based on challenges to 
research studies and 
technical approaches. 
Areas needed to be 
addressed more in the 
future due to lack of 
studies: (big network 
data, streaming and 
changing data, and real-
world data collection and 
availability). 

Yes  

[12] 2023 Cyber Threat 
Intelligence 
Mining 
IOT 
( 
Perception 
layer, 
network 
layer) 

CTI mining 
methodology 

No  Yes  Developing CTI mining 
methodology for 
proactive cybersecurity 
protection. 
Analyzing the state-of-
the-art methods for CIT 
knowledge acquisition 
taxonomies. 

Yes 
 

[13] 2024 Metaverse A survey-based 
approach 

No  Yes  Presenting different 
cybersecurity attacks base 
on features and enabling 
technologies of the 
metaverse to identify 
attack incidents and how 
they can spread through 
metaverse. 
Incorporates several 
biometrics along with 
EEG and ECG to give 
liveness checks and 
validation of NFT 
transactions and users in 
the metaverse. 

Yes  
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Effectiveness of AI for 
ID in metaverse, 
blockchain and NFT 
transactions security. 

[14] 2024 Communicati
on Networks 
including  
IOT as a 
subset  
( 
Perception 
layer, 
network 
layer, and the 
application 
layer) 

Article collection 
and selection 
and Bibliometric 
analysis 

No  Yes  Investigating new areas 
like the combination of 
RL-based IDSs with 
conventional methods, 
energy efficiency 
considerations, 
application of LLMs and 
hybrid techniques. 
analyzing existing 
literature gaps and 
suggesting future 
directions  

Yes  

[15] 2024 Network 
Traffic 
Analysis 
including  
IOT 
( 
Network 
layer, and the 
application 
layer) 

Wohlin [19] 
systematic 
approach 

No  Yes  The Promising 
performance of XAI into 
NTA, which improves 
understanding of 
network behavior and 
decision-making. 
Implementing XAI in 
this domain posing 
challenges including 
(Insufficient methods 
and integration cost, etc.) 
 

Yes  

[16] 2023 Automotive 
domain : 
IVNs 
IoV 
ITS 
 

None  No  Yes  Systematically reviewing 
intrusion detection 
within automotive 
domain (intra and inter 
vehicles networks). 
Highlighting the 
performance of IDSs 
which based on non-
learning, traditional ML, 
DL methods accordingly 
and blockchain protected 
methods as they applied 
to federated IDSs. 

Yes  

[17] 2022 Data 
Provenance : 
Information 
flow among 
system 
entities 

A survey-based 
approach 

No  Yes  Effectiveness of PIDS to 
capture highly 
sophisticated attacks and 
reducing false-alarm rates 
excelling traditional 
IDSs. 
Analyzing previous 
surveys in this domain 
offering gaps and future 
directions. 

Yes  

[18] 2024 Penetration 
testing  
GMLMs as 
IDSs 
Supplement 
datasets  
 

A survey-based 
approach 

No  Yes  Issues encountered by 
traditional ML 
approaches such as data 
quality and performance 
can be overcome by 
GMLMs. 
Effectiveness of GMLMs 
with introducing new 
minority classes to the 
dataset. 

Yes  
 

 

5| Deep Learning Architectures for Intrusion Detection 
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Several DL Techniques proposes by researches in this domain for the purpose of enhancing IDSs capabilities, 

therefore a comprehensive study on DL methods proposed in this literature, Figure 2, Figure 3 present a 

taxonomy of DL methods based on model architecture and learning strategy, and Figure 4 present common 

DL application. Also in this section we review selected architectures to our experimental study. 

The CNN-based model proposed by Aljuaid and Alshamrani [20] for enhancing IDSs within cloud computing 

environments. Authors of this wok employed seven stages approach involved data preprocessing, feature 

selection using Pearson correlation matrix analysis, SMOTE and down-sampling techniques to address data 

imbalance. The used CNN architecture consists of three Conv1D layers, a batch normalization for reliable 

training process, MaxPooling1D layers followed by a Flatten layer to converts the feature maps to one-

dimensional vector and another two fully connected dense layers. To prevent overfitting a Dropout layer with 

a 0.5 dropout rate added, and the output layer is dense layer with SoftMax activation function. 

The BiDLSTM model which is introduced by Imrana et al. [21] to overcome limitations of traditional LSTM 

architecture for intrusion detection. The proposed architecture constructed from embedding layer to map 

inputs to their representations, feeding it to bidirectional LSTM layers, the output then fed to fully connected 

layers ReLU activation function. Also a dropout layer of 0.2 dropout rate included to ensure that the model 

doesn’t over-fit. 

The RNN model proposed by Wang et al. [22] tackling intrusion detection. RNN architecture used in this 

paper consists of five recurrent layers, five dropout and batch normalization layers featured to prevent 

overfitting and output layers. 

The DLSTM classifier with proposed by Kasongo and Sun [23] to be included within a wireless IDS. The 

model structured from an input layer, a DLSTM Unit that include LSTM layers with and a Dense Feed 

Forward Layer with ReLU and Sigmoid activation functions, also an output layer with softmax activation 

function. 

HCRNNIDS introduced by Khan [24] as a hybrid model that combines CNNs and RNNs within IDS to 

enhances detection capabilities and reduce false alarm rates. Another hybrid model DCNNBiLSTM proposed 

by Hnamte and Hussain [25] that model combines CNN and BiLSTM layers, followed by a DNN layer for 

IDS. 

CNN–WDLSTM which proposed by Hassan et al. [26] is a hybrid deep learning approach that integrates 

CNNs with WDLSTM to enhance intrusion detection within big data environments. The proposed model 

comprise two 1D convolutional layers with ReLU activation function, one 1D maximum-pooling layer, one 

1D WDLSTM layer, and one fully connected layer. 

The GRU based DL architecture also introduced by Ansari et al [27] for predicting network intrusion alerts 

by learning from historical alerts generated by malicious sources. The model contracted from three-layer GRU 

layers stacked on the top of a dense layer. Also IDSs DL based architectures Learn compact representations 

of data by using a encoder-decoder, which able to Learn to detect anomalies based on the difference between 

what is expected versus what was actually received. This method has advantages in cases where labeled attack 

data is rare or unavailable, also used for detecting new sophisticated attacks [6],[28]. 
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Figure 2 a Taxonomy of Deep Learning Models 

based on architecture 
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Figure 2 A Taxonomy of Deep Learning Strategies 
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Figure 3 A Taxonomy of Deep Learning Applications 

6| Experimental Analysis and Performance Evaluation 

In this section we present a systematic analysis of experimental studies, evaluating deep learning-based 

intrusion detection systems. We introduce dataset characteristics, evaluation methodologies, performance 

metrics, and comparative results. 
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6.1| Benchmark Datasets for IDS Evaluation 
We have analyzed and compared a number of deep learning-based intrusion detection systems using 

benchmark datasets including Edge-IIoTset, IEC 60870-5-104, and DNP3 Intrusion Detection datasets, 

which contain various attacks, traffic types and operating conditions.  

Edge-IIoTset was published by  [29] as inclusive realistic cybersecurity dataset collected under seven-layers 

IoT testbed configured with demonstrative set of devices, protocols and cloud and edge setups. In this 

testbed, the IoT traffics were generated from more than 10 IoT devices including ultrasonic sensor, flame 

sensor, affordable digital sensors for measuring humidity and temperature, pH sensor meter, Soil moisture 

sensor, water level sensor, soil sensor, etc. The data included fourteen categories of attacks associated with 

IoT connectivity protocols. These attacks were belonged to five threats namely Man in the middle attacks, 

Malware attacks, Information gathering (IG) attacks, Injection attacks, and DoS/DDoS attacks. It also 

includes normal traffic samples. The Edge-IIoTset dataset contains a set of 61 highly correlated features from 

a total of 1176 features, which are aggregated from several sources such as system alerts, logs, network traffic, 

etc. The class distribution of samples across both training and test is introduced in Table 2. 

Table 2 Summary of class distribution of the Edge-IIoTset data. 

Attack family Attacks class Training samples Testing samples Class weights 

DoS/DDoS TCP SYN Flood 
DDoS 

8198 2049 2.9553 

UDP flood DDoS 11598 2900 1.2170 

HTTP flood 
DDoS 

8396 2099 2.9642 

ICMP flood DDoS 10477 2619 1.2706 

IG Port Scanning 7137 1784 6.5568 

OS Fingerprinting 682 171  

147.7989 
 

Vulnerability 
scanning attack 

8050 2012  

2.9524 
 

Injection XSS 7634 1909  

 

9.2961 
 

SQL injection 8225 2057 2.8894 

Uploading attack 8171 2043  

 

3.9312 
 

MiTM ARP Spoofing 286 72 121.8672 

DNS Spoofing 

Malware backdoor 7892 1973 5.9507 

Password cracking 7978 1994  

 

2.9499 
 

Ransomware 7751 1938 13.5420 

 

IEC 60870-5-104 Intrusion Detection Dataset was published by Radoglou-Grammatikis et al. [30] for the 

evaluation of AI based intrusion detection systems (IDS), it was developed within two H2020 projects, 

ELECTRON: rEsilient and seLf-healed EleCTRical pOwer Nanogrid (101021936) and SDN-microSENSE: 

SDN - microgrid reSilient Electrical eNergy SystEm (833955).A network topology of seven industrial entities, 

a Human-Machine Interface (HMI), and three cyber attackers was used to construct this dataset. The data 

contains twelve cyberattacks categorized into unauthorized access, traffic sniffing, MITM, and DoS attacks. 
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It also include a normal traffic class. IEC 60870-5-104 Intrusion Detection Dataset contains eleven features 

including complete network configuration, traffic logs, attack diversity, heterogeneity, and a well-structured 

feature set. The data files include zip archives associated to entities and devices related to each attack, each 

archive includes PCAP traffic data, flow statistics from CICFlowMeter, and results from the Python parser. 

Table 3 and 4 introduce the class distribution of samples from the CICFlowMeter, and the Python parser 

across both training and test. 

Table 2 Summary of class distribution of the IEC 60870-5-104- CICFlowMeter data. 

Attack family  Attacks class  Training samples  Testing samples  Class weights 

MITM MITM 914 391 1.0 

traffic sniffing traffic sniffing 914 391 1.0 

unauthorized 
access 

C_RD_NA_1 914 391 1.0 

C_CI_NA_1 914 391 1.0 

C_RP_NA_1 914 391 1.0 

C_SC_NA_1 914 391 1.0 

C_SE_NA_1 914 391 1.0 

DOS M_SP_NA_1_DOS 914 391 1.0 

C_CI_NA_1_DOS 914 391 1.0 

C_SE_NA_1_DOS 914 391 1.0 

C_RD_NA_1_DOS 914 391 1.0 

C_RP_NA_1_DOS 914 391 1.0 

 
Table 3 Summary of class distribution of the IEC 60870-5-104- Python parser data. 

Attack family  Attacks class  Training samples  Testing samples  Class weights 

MITM MITM 914 391 1.0 

traffic sniffing traffic sniffing 914 391 1.0 

unauthorized 
access 

C_RD_NA_1 914 391 1.0 

C_CI_NA_1 914 391 1.0 

C_RP_NA_1 914 391 1.0 

C_SC_NA_1 914 391 1.0 

C_SE_NA_1 914 391 1.0 

DOS M_SP_NA_1_DOS 914 391 1.0 

C_CI_NA_1_DOS 914 391 1.0 

C_SE_NA_1_DOS 914 391 1.0 

C_RD_NA_1_DOS 914 391 1.0 

C_RP_NA_1_DOS 914 391 1.0 

 

The DNP3 Intrusion Detection Dataset was tailored by Radoglou-Grammatikis et al. [31]  as a benchmark 

centered on the Distributed Network Protocol Version 3 (DNP3) to enhance the performance of Intrusion 

Detection and Prevention Systems (IDPS).In this dataset, a network topology containing eight industrial 

entities including eight industrial entities, one Human Machine Interfaces (HMI) and three cyber attackers 

was used configure this dataset. The data encapsulate nine DNP3 related cyberattack scenarios related 

unauthorized command execution and DoS attacks, in addition to a normal attack class. The DNP3 Intrusion 

Detection Dataset contains eleven features including complete network configuration, detailed traffic logs, 

labeled datasets, comprehensive interaction data, full capture files, protocol diversity, attack variations, system 

heterogeneity, feature sets, and metadata. The dataset has nine attack folders each one contains PCAP files, 

CICFlowMeter files, and labeled DNP3 flow statistics generated using a custom Python parser. Table 5 and 

6 present the class distribution of samples from the CICFlowMeter, and the Python parser across both 

training and test. 
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Table 4 Summary of class distribution of the DNP3 - CICFlowMeter data. 

Attack family  Attacks class  Training 
samples  

Testing 
samples  

Class weights 

DNP3 
unauthorized 
commands 

INIT_DATA         466 200 1.0 

DISABLE_UNSOLICITED    466 200 1.0 

WARM_RESTART   466 200 1.0 

REPLAY 466 200 1.0 

DNP3_ENUMERATE          466 200 1.0 

COLD_RESTART            466 200 1.0 

DNP3_INFO               466 200 1.0 

STOP_APP            466 200 1.0 

DoS MITM_DOS        466 200 1.0 

 

Table 5 Summary of class distribution of the DNP3 - Python parser data. 

Attack family  Attacks class  Training 
samples  

Testing 
samples  

Class weights 

DNP3 
unauthorized 
commands 

INIT_DATA         466 200 1.0 

DISABLE_UNSOLICITED    466 200 1.0 

WARM_RESTART   466 200 1.0 

REPLAY 466 200 1.0 

DNP3_ENUMERATE          466 200 1.0 

COLD_RESTART            466 200 1.0 

DNP3_INFO               466 200 1.0 

STOP_APP            466 200 1.0 

DoS MITM_DOS        466 200 1.0 

 

6.2| Evaluation Metrics  
IoT Deep Learning Based IDS performance evaluated using a number of metrics including: 

1. Accuracy 

Calculates overall correctness, provide an explanation of results, but it can mislead on unbalanced data sets 

[25]. 

(𝑇𝑃 +  𝑇𝑁) / (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁) 

2. Precision 

Calculates the correctness of a prediction of an attack, which shows how many of the traffic flaggings are 

correct, and not false alarms [23], [25]. 

(𝑇𝑃 / (𝑇𝑃 +  𝐹𝑃)) 

3. Recall 

Measures the ability of a system to detect all of the actual attacks that occurred [23]. 

(𝑇𝑃 / (𝑇𝑃 +  𝐹𝑁)) 

4. F1-Score 

Used to find a measure that balances precision and recall, allowing for a single metric that may be used to 

compare two models when both metrics are equally important [25]. 

(2 ×  (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑅𝑒𝑐𝑎𝑙𝑙) / (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)) 

5. ROC Analysis and AUC 
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Receiver Operating Characteristics (ROC) charts are used to display a classifiers performance at various 

thresholds by displaying the true positive rate versus the false positive rate. The area under the ROC curve 

(AUC) is a measure of the classifiers performance independent of the threshold selected. Values close to 1.0 

indicate good separation between classes [24], [27].  

 

Table 6 Summary of evaluation metrics for intrusion detection systems. 

Metric Formula Interpretation 

Accuracy (TP + TN) / 
(TP + TN + 
FP + FN) 

Overall 
correctness 

Precision TP / (TP + 
FP) 

Reliability of 
positive 
predictions 

Recall TP / (TP + 
FN) 

Coverage of 
actual positives 

F1-Score 2 × (Precision 
× Recall) / 
(Precision + 
Recall) 

Harmonic 
mean of 
precision and 
recall 

 

6.3| Comparative Performance Analysis 
This subsection presents comparative performance analysis of ten baseline architectures evaluated on three 

IoT intrusion detection datasets: Edge-IIoTset, IEC 60870-5-104, and DNP3. 

Performance on Edge-IIoTset Dataset 

Table 8 presents quantitative comparison of ten baseline models on the Edge-IIoTset dataset. 

DCNNBiLSTM records 97.56% accuracy, 97.56% F1-score, and 0.9996 AUC; HCRNNIDS records 97.34% 

F1-score; CNN-WDLSTM records 97.45% F1-score. Hybrid CNN-RNN architectures record 1-2 percentage 

points higher than single-architecture approaches in this evaluation. 

Among single-architecture models, BiLSTM records 97.12% F1-score, DLSTM records 96.78% F1-score, 

and vanilla RNN records 95.27% F1-score. The 2.29 percentage point gap between DCNNBiLSTM and 

RNN illustrates performance variability across architected. RNN lower metrics caused by vanishing gradients, 

which limiting effective learning of long-term dependencies. 

Table 7 Quantitative Comparison of the results of different baselines on the Edge-IIoTset dataset 

Models Accuracy Precision  Recall F1-score  AUC 

CNN[20] 0.9690 0.9692 0.9690 0.9690 0.9995 

BiLSTM[21] 0.9712 0.9713 0.9712 0.9712 0.9995 

RNN[22] 0.9523 0.9541 0.9523 0.9527 0.9986 

DLSTM[23] 0.9678 0.9679 0.9678 0.9678 0.9992 

HCRNNIDS[24] 0.9734 0.9735 0.9734 0.9734 0.9996 

DCNNBiLSTM[25] 0.9756 0.9756 0.9756 0.9756 0.9996 

CNN–
WDLSTM[26] 

0.9745 0.9745 0.9745 0.9745 0.9996 

GRU[27] 0.9601 0.9606 0.9601 0.9602 0.9991 

AE-LSTM[32] 0.9689 0.9690 0.9689 0.9689 0.9992 

SAAE-DNN[28] 0.9721 0.9722 0.9721 0.9721 0.9995 

 

Performance on IEC 60870-5-104, and DNP3 datasets 
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Tables 9–12 show comparisons of the results from different baselines on the IEC 60870-5-104 data, as well 

as on the DNP3- data, using both protocol-specific parser features and CICFlowMeter-based flow statistics.  

DCNNBiLSTM has much lower performance compared to Edge-IIoTset (F1-score 97.56% and F1-score 

56% from Table 9) shows how performance decline occurs when models experience domain-specific 

industrial control protocols that contain insufficient discriminative information in standard network flow 

statistics. 

The CNN-WDLSTM and AE-LSTM perform 55% accuracy and 56% F1-scores, while BiLSTM, DLSTM, 

and GRU have very poor performances at approximately 40-41% accuracy. This indicates that these recurrent 

architectures alone are unable to capture industrial protocol patterns without complementary spatial feature 

extraction via convolutional layers. The difference in performance between hybrid (55-56%) and single 

architecture recurrent models (40-41%) is 15-16 percentage points, much larger than the 2-3 percentage point 

differences in Edge-IIoTset. This suggests that the architecture used becomes much more important when 

working with challenging domain-specific datasets. 

Table 8 Quantitative Comparison of the results of different baselines on the IEC 60870-5-104- 

CICFlowMeter dataset. 

Models Accuracy Precision  Recall F1-score  AUC 

CNN[20] 0.53 0.61 0.53 0.54 0.90 

BiLSTM[21] 0.41 0.44 0.41 0.38 0.83 

RNN[22] 0.51 0.67 0.51 0.52 0.89 

DLSTM[23] 0.40 0.44 0.40 0.39 0.83 

HCRNNIDS[24] 0.54 0.61 0.54 0.54 0.90 

DCNNBiLSTM[25] 0.56 0.61 0.56 0.57 0.90 

CNN–
WDLSTM[26] 

0.55 0.61 0.55 0.56 0.90 

GRU[27] 0.41 0.44 0.41 0.39s 0.83 

AE-LSTM[32] 0.55 0.60 0.55 0.56 0.90 

SAAE-DNN[28] 0.52 0.62 0.52 0.51 0.89 

 

Protocol-specific feature extraction improves performance (Table 10). CNN-WDLSTM achieving 55% 

accuracy and 54% F1-score using custom IEC 60870-5-104 parser features that capture protocol-layer 

characteristics. Performance remains modest compared to Edge-IIoTset, reflecting complexity of industrial 

control protocol traffic characterized by limited traffic volume which requires deep domain expertise for 

effective feature engineering. 

Table 9 Quantitative Comparison of the results of different baselines on the IEC 60870-5-104- 

Python parser dataset. 

Models Accuracy Precision  Recall F1-score  AUC 

CNN[20] 0.54 0.65 0.54 0.53 0.90 

BiLSTM[21] 0.53 0.64 0.53 0.51 0.90 

RNN[22] 0.53 0.66 0.53 0.51 0.90 

DLSTM[23] 0.53 0.62 0.53 0.51 0.90 

HCRNNIDS[24] 0.54 0.62 0.54 0.54 0.90 

DCNNBiLSTM[25] 0.54 0.63 0.54 0.53 0.91 

CNN–
WDLSTM[26] 

0.55 0.61 0.55 0.54 0.91 

GRU[27] 0.54 0.61 0.54 0.53 0.90 

AE-LSTM[32] 0.54 0.62 0.54 0.53 0.92 

SAAE-DNN[28] 0.53 0.64 0.53 0.51 0.93 
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DNP3 dataset evaluation shows higher metrics with CICFlowMeter features compared to IEC 60870-5-104, 

DNP3 attack patterns may exhibit distinctive flow-level signatures (Table 11). HCRNNIDS and 

DCNNBiLSTM record 91% accuracy, 91% recall, and 91% F1-score with 0.99-1.00 AUC under these 

experimental conditions. High metrics on DNP3 may relate to the protocol distinctive characteristics. 

Table 10 Quantitative Comparison of the results of different baselines on the DNP3 - 

CICFlowMeter dataset. 

Models Accuracy Precision  Recall F1-score  AUC 

CNN[20] 0.87 0.92 0.87 0.87 0.99 

BiLSTM[21] 0.81 0.88 0.81 0.79 0.98 

RNN[22] 0.87 0.92 0.87 0.86 0.99 

DLSTM[23] 0.81 0.88 0.81 0.79 0.98 

HCRNNIDS[24] 0.91 0.93 0.91 0.91 0.99 

DCNNBiLSTM[25] 0.91 0.92 0.91 0.91 1.00 

CNN–
WDLSTM[26] 

0.88 0.93 0.88 0.88 0.99 

GRU[27] 0.82 0.89 0.82 0.80 0.98 

AE-LSTM[32] 0.86 0.91 0.86 0.86 0.99 

SAAE-DNN[28] 0.86 0.91 0.86 0.86 0.99 
 

DNP3 parser features performance (Table 12), with CNN, RNN, HCRNNIDS, DCNNBiLSTM, and CNN-

WDLSTM all achieving 94% accuracy, 95% precision, and 94% F1-score with perfect 1.00 AUC. The 

convergence of multiple architectures to a 94% performance indicates that protocol-aware feature engineering 

is able to extract discriminative attack signatures, as well as reduce the relative importance of architectural 

complexity when sufficient high quality domain specific features exist. BiLSTM shows poor performance 

(accuracy = 69%, f1 score = 67%), compared to other datasets in which it has performed well, demonstrating 

that the choice of architecture is interdependent with the representation of features and characteristics of the 

dataset. 

Table 11 Quantitative Comparison of the results of different baselines on the DNP3 - Python parser 

dataset. 

Models Accuracy Precision Recall F1-score AUC 

CNN[20] 0.94 0.95 0.94 0.94 1.00 

BiLSTM[21] 0.69 0.75 0.69 0.67 0.96 

RNN[22] 0.94 0.95 0.94 0.94 1.00 

DLSTM[23] 0.72 0.82 0.72 0.71 0.93 

HCRNNIDS[24] 0.94 0.95 0.94 0.94 1.00 

DCNNBiLSTM[25] 0.94 0.95 0.94 0.94 1.00 

CNN–
WDLSTM[26] 

0.94 0.95 0.94 0.94 1.00 

GRU[27] 0.74 0.86 0.74 0.74 0.93 

AE-LSTM[32] 0.93 0.95 0.93 0.93 1.00 

SAAE-DNN[28] 0.91 0.94 0.91 0.91 0.95 
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Figure 4 Confusion Matrices of different baselines on the Edge-IIoTset data. 
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AE-LSTM[32]   SAAE-DNN[28] 

 

  

 

Figure 5 Confusion Matrices of different baselines on the IEC 60870-5-104- CICFlowMeter data. 
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Figure 6 Confusion Matrices of different baselines on the IEC 60870-5-104- Python parser data. 
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Figure 7 Confusion Matrices of different baselines on the DNP3 - CICFlowMeter data. 
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Figure 8 Confusion Matrices of different baselines on the DNP3 - Python parser data. 
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Figure 9 ROC curves of different baselines on the Edge-IIoTset data by class 

Figure 10 Micro-Average ROC curves of different baselines on the Edge-IIoTset data. 
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Figure 11 ROC curves of different baselines on the IEC 60870-5-104- CICFlowMeter data. 
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Figure 12 ROC curves of different baselines on the IEC 60870-5-104- Python parser data 
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Figure 13 ROC curves of different baselines on the DNP3 - CICFlowMeter data. 
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Figure 14. ROC curves of different baselines on the DNP3 - Python parser data. 

 

7| Discussion  

In this section we analyses the findings of the systematic literature review to evaluate ongoing issues, as well 

as areas for future research 

Intrusion Detection Systems have many issues relating to availably of dataset, the quality of those datasets 

and relevance to IDS different domains. Although there is a large amount of performance differences across 

all of the testing scenarios. Comparative analysis shows metric differences when models are evaluated across 

domains, DCNNBiLSTM records 97.56% F1-score on Edge-IIoTset but only 56-57% on IEC 60870-5-104 

with CICFlowMeter features, representing a 40-percentage-point difference illustrating generalization 

challenges. Similarly, BiLSTM archives high Edge-IIoTset metrics 97.12% F1-score and records lower results 

on DNP3 protocol-specific features (69% accuracy, 67% F1-score), suggesting architectural choices interact 

with feature representations and protocol characteristics in complex ways. 

IoT-specific datasets remain scarce, with Edge-IIoTset, IEC 60870-5-104, and DNP3 exceptions addressing 

consumer IoT, power grid communications, and SCADA systems. Even specialized datasets exhibit 

limitations such as class imbalance, limited temporal coverage, and controlled settings that misses operational 

noise and protocol implementation variations. 

IoT devices operate under severe computational, memory, and energy constraints that challenge deployment 

of sophisticated deep learning models. Models deployment needs resource requirements for high-complexity 

architectures, hybrid models requiring edge AI accelerators or cloud deployment.  

Effective intrusion detection in IoT environments demands real-time processing capabilities enabling timely 

threat response. Critical infrastructure applications require low latency to enable protective relay actions 

before failures. Hybrid architectures recording higher accuracy metrics which impose higher latencies than 

lightweight models. Only lightweight architectures may satisfy latency constraints, and accepting some 

accuracy penalty. 

Systematic comparative analysis across diverse datasets presents consistent architectural patterns influencing 

detection metrics, providing evidence for architecture selection in operational deployments. Hybrid CNN-

LSTM architectures rank among top scorers regardless of dataset characteristics, DCNNBiLSTM records 

rank 1 on Edge-IIoTset (97.56% F1), rank 1 on IEC 60870-5-104 CICFlowMeter (57% F1), rank 1 on DNP3 

CICFlowMeter (91% F1), and rank 1 on DNP3 parser features (94% F1), indicating consistent cross-dataset 

performance. HCRNNIDS and CNN-WDLSTM maintain top three rankings across four of five evaluation 

scenarios, indicating that hybrid architectures combining CNN spatial feature extraction with RNN temporal 

modeling address diverse attack. 
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Metric differences between hybrid architectures vary across datasets, providing insights about when 

architectural representation appears to be effective. On Edge-IIoTset, the gap between DCNNBiLSTM 

(97.56% F1) and BiLSTM (97.12% F1) reaches only 0.44 percentage points, show that architectural 

complexity is regarded when datasets contain strong discriminative features. On IEC 60870-5-104 

CICFlowMeter features, hybrid architectures (DCNNBiLSTM: 56%, CNN-WDLSTM: 55%) record 14-16 

percentage points higher than recurrent-only models (BiLSTM: 41%, DLSTM: 40%, GRU: 41%), indicating 

architectural sophistication appears more beneficial for challenging domains where generic features provide 

limited discriminative power. 

Recurrent only architectures shows highly variable metrics. BiLSTM records 97.12% F1-score on Edge-

IIoTset, 53% accuracy on IEC 60870-5-104 parser features, 69% accuracy on DNP3 parser features, prove 

that temporal models require careful feature for consistent results. Vanilla RNN records lower metrics across 

all scenarios (Edge-IIoTset: 95.27%, IEC CICFlowMeter: 51%, DNP3 CICFlowMeter: 87%, DNP3 parser: 

94%), that causes by vanishing gradient limitations, protocol-specific DNP3 features relate to shorter 

temporal dependencies in that dataset. Autoencoder-based approaches (AE-LSTM, SAAE-DNN) 

demonstrate consistent metrics across all datasets, prove that unsupervised pretraining may provide stable 

initialization reducing overfitting risk. 

8|Conclusion and Future Work 

Our comparative study evaluate both the performance of ten different deep learning architectures and the 

relative merits of each model using a combination of three IoT-specific datasets Edge-IIoTset, IEC 60870-

5-104, and DNP3. The results of this comparison provide insights into architectures in terms of the degree 

to which they generalize to other application contexts. 

CNN-LSTM hybrid architectures performed better than non-hybrid architectures in all cases, CNN-BiLSTM 

outperformed the baseline CNN architectures at all three datasets, Edge-IIoTset with a 97.56% F1-score, 

IEC 60870-5-104 with a 56-57% F1-score, and DNP3 with a 91-94% F1-score, the CNN-BiLSTM 

architecture also outperformed the baseline architectures at all three datasets depending on the specific 

characteristics of the dataset used.The BiLSTM model has shown strong performance on the Edge- IIoTset 

dataset (97.12% accuracy) but poor performance on the DNP3 dataset (69% accuracy). These results illustrate 

the complexity of interactions between the features of data and the architecture of deep learning models. 

Models that were able to detect anomalies in IoT traffic at high F1-scores than others are likely to exceed the 

processing capabilities of most IoT devices. Therefore, many of the models need to be deployed with edge 

AI accelerators. Energy constraints are still one of the primary limiting factors for the deployment of 

sophisticated models in battery powered IoT applications. 

There are four major areas that require additional study, The development of architectures optimized for edge 

constraints using neural architecture search to improve F1-scores under resource limited conditions, Cross-

domain transfer learning, Explainable AI methods that interpret the errors made by anomaly detection 

models, Development of comprehensive IoT datasets with emerging protocols and testing anomaly detection 

models in the presence of adversarial attacks. 
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