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Abstract

The new generations of communication networks are demanding intrusion detection systems capable of addressing
sophisticated cyber threats. This systematic literature review examines deep learning-based intrusion detection
systems for IoT networks through rigorous analysis, adhering to PRISMA 2020 guidelines. We synthesize findings
from studies to address five research questions covering IoT security challenges, architectural approaches,
performance characteristics, emerging research directions, and providing taxonomy of deep learning architectures,
strategies and applications. Our analysis indicates that hybrid deep learning architectures report higher metrics than
single-model approaches in evaluated scenarios. Critical research gaps emerge across multiple dimensions, such as
edge deployment limited resources, lack of realistic loT-specific datasets and absence of explainable AI mechanisms
in current solutions. This synthesis provides insights for advancing IoT security.

Keywords: Intrusion Detection Systems, Deep Learning, Internet of Things, Cybersecurity, Neural Networks,
Network Security, Systematic Literature Review

1 | Introduction

The rapid expansion of global networks and their associated technological developments led to several
internet security issues. Various security threats raised due to uncontrolled access of information posing
challenges to network security and intrusion detection effectiveness. To prevent the network from potential
intrusions, IDSs arises as a tool to ensure network confidentiality, integrity, and availability by monitoring
network traffic [1],[2].

Recently IoT networks has been adapted by several organizations to automate and optimize their business, it
is considered as one of the fastest growing technologies. A new security challenges arises due to the
continuous advancement of IoT technology. The connection between IoT devises usually takes place through
a wireless network, such an environment easily enable attacker to gain illegal access to network devices.
Traditional security techniques such as encryption, authentication, access control, network security, and
application security were used to address IoT security challenges, however those mechanisms have been
proven their inefficiency to meet environments diverse contexts, however targeting a specific security threats
by implementing a security measurements against it can be more effective. Recently a new sophisticated attack
have been arise, therefor exploring more effective IDSs is the research main goal. IDSs are potential methods
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for tracking IoT environments against attacks which present at network level. The IDS analyses the network
data packets while offering a real-time responses considering conditions such as low energy, low process
capacity, rapid response, and massive amounts of data processing [3],[4]. Most of existed IDSs have various
drawbacks including limited flexibility and scalability[5].

One of most common issues that impact ID techniques is availability of labeled datasets, although they are
costly, they provide higher accuracy to IDS. Based on the availability of labeled data, the associated learning
strategy applied to achieve higher detection accuracy, on the other hand utilizing unsupervised learning
methods is necessary when no labeled data is available even if they result in lower accuracy and higher false
positives rates. Most of present IDS using various machine learning approaches to detect normal and
abnormal traffic in systems and networks, however they still suffer from higher false positive and lower
detection rates. To deal with various types of intrusions and security challenges in varied environments, DL
have been adapted as a subset of ML. DL methods are capable of modeling complicated data architectures
to execute varied non-linear data transformations and recognize patterns in data using several architectures.
ANNs are the basic architecture of DL models, they process data using several hidden layers. Various deep
learning networks have been deployed in different domains and intrusion detection contexts, such as DBNs,
DNNs, CNNs, Generative adversarial networks GANs, and RINNs. Supervised, and semi-supervised and
unsupervised learning techniques can be utilized. Furthermore, deep learning promotes incremental learning

and can extract novel features from training data samples [6].
2 | Review Objectives and Questions

This review provides a deep understanding of deep learning approaches used in IoT intrusion detection by
investigating five different research questions that are interconnected:

RQ1: What security challenges and attack vectors distinguish 1oT environments from traditional network
infrastructures, and how do these differences shape defensive requirements?

RQ2: Which deep learning architectures have employed for intrusion detection, and what their advantages
and limitations?

RQ3: How have researchers adapted deep learning methods for IoT intrusion detection with resource

constraints and architectural considerations?

RQ4: How do deep learning-based intrusion detection approaches evaluated under controlled experimental
conditions?

RQ5: What critical research gaps, challenges, and open directions exist for advancing deep learning-based
intrusion detection?

This review presents the following:

* Surveys deep learning based approaches to detect intrusions in IoT systems by examining vatrious
architectures, and performance metrics across fifty peer reviewed studies.

* Provides a comparative analysis of the performance of multiple deep learning architectures.
* Assesses the difficulties associated with of intrusion detection systems in IoT environment.
* Classifies the research gaps in the field of deep learning based 10T intrusion detection.

Section 3 describes the systematic review methodology, Section 4 describes the IoT foundation and reviews
relevant survey literature, Section 5 analyzes the deep learning architectures employed for detecting intrusions,
Section 6 contains an experimental evaluation of the performance of the deep learning approaches, Section
7combines the results of the study, implementation challenges, and research paths, Section 8 concludes and
summarize the review by providing findings and recommendations.
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3 | Methodology

We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses PRISMA 2020, which allows
to conduct a systematic literature reviews. PRISMA has become an international standard for systematic
reviews in all scientific areas and it promotes the quality of reports. The review process includes the
formulation of a research question, the systematic search for studies, and the selection of studies according
to determined procedure.

3.1 | Review Protocol and Questions

A systematic review protocol created before literature search to clearly define the aims of the review and

include details on specific inclusion and exclusion criteria, as well as search methods and data extraction

techniques.

3.2 | Information Sources and Search Strategy

Search strategy was implemented across multiple academic databases and digital libraries to identify relevant

peer-reviewed publications. Information sources included:

* IEEE Xplore Digital Library

* ACM Digital Library

* Elsevier ScienceDirect

* Springer Link

* MDPI Publishing Platform

* Wiley Online Library

* Google Scholar

We include publications that focused on recent advances in deep learning-based intrusion detection. The

search strategy uses combination of keywords organized using Boolean operators:

* Intrusion Detection: ("Intrusion detection” OR "anomaly detection" OR "network security” OR "cyber
threat detection" OR "attack detection™)

* Deep Learning: ("deep learning" OR "neural network" OR "convolutional neural network" OR "CNN" OR
"recurrent neural network" OR "RNN" OR "LSTM" OR "autoencoder" OR "deep neural network"
OR "DNN")

* IoT: ("Internet of Things" OR "IoT" OR "Industrial IoT" OR "IIoT" OR "smart devices" OR "edge
computing" OR "IoT networks")

* The complete search string combined these clusters as follows:

®  (Cluster 1) AND (Cluster 2) AND [(Cluster 3) OR "systematic review" OR "literature
review" OR "sutrvey"

3.3| Eligibility Criteria

Studies were selected by defined criteria to ensure that studies chosen were relevant to the study objectives.

Inclusion Criteria:

* Peer reviewed journal articles, conference papers, and systematic reviews.

* Deep learning-based studies on intrusion detection, anomaly detection, and other cybersecurity applications

* Studies that addressed IoT security, Network Intrusion Detection, Other areas of Cybersecurity

* Publications that included details on the Deep Learning architecture, data sets used, and evaluation mettics
applied in the study

* Publication in high-quality, peer reviewed journals/venues

* Study articles written in English language

Exclusion Criteria:

* Preprint publications, Technical Reports, White Papers, Thesis Documents

* Publications prior to 2020

¢ Traditional studies which did not include Deep Learning component

* Non-Intrusion Detection Studies, Non-Network Security Studies, Non-Cybersecurity Studies

* Duplicate Publications and Extended Versions of publications
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* Predatory Journals/Venues that lack a Rigorous Peer Review Process.

3.4| Study Selection Process

Study selection followed multi-stage screening process:

* Identification: Initial database searches as we aggregated search results from all databases and imported
them into reference management software for processing,.

* Duplicate Removal

¢ Title and Abstract Screening

* Full-Text Assessment

* Final Inclusion: Studies satisfying all eligibility criteria after full-text assessment were included in the
systematic review

3.5| Data Collection and Extraction

We developed method for extracting data to ensure that a data were extracted from the studies:

Bibliographic Data Elements:

* Authors and publication date

* Title

* Venue/Publisher

* Study Type

Data Elements Describing Methodology:

* Deep Learning Architecture

* Network Layers, Activation Functions, Optimization Algorithms

* Training Procedures, Hyperparameters Configured

Context of Application:

* Target Environment

* Layer of IoT Addressed

* Types of Attacks Detected

* Data Elements Relating to Datasets and Evaluation

¢ Evaluation Metrics

* Results of Performance and Comparative Analyses

Data Elements Relating to Quality Indicators:

* Experimental Design

* Validation Methods

* Code Availability

4| Foundational Concepts and Background

4.1| Layered Architecture Models

Several IoT architectures are proposed by researches in the literature. Architectures such as the 3-layer
architecture which comprise the perception or device, network or transmission and application layers. The
ITU recommended Reference Model for IoT which constructed from four layers device layer, network layer,
application support layer, service support and application layer. IoT-A Architectural Reference Model
proposed by FP7 which is describe the modeling of IoT business process management, IoT services, cross-
service organization and virtual entities, information and functional aspects. An IoT Reference Architecture
developed by WSO2 that comprise five layers including Client/external communications, Event processing
and analytics, Aggregation/bus layer, Relevant transports, Devices. And An IoT Reference Architecture
suggested by Cisco which is seven layered 10T reference model [7].
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We aligned to Cisco IoT seven-layered reference model which is present in Figure 1 to facilitate more about
model layers, protocols, loT common attacks, and IDSs.

CISCO IOT REFERENCE MODEL
@lﬂ -] o Collaboration & Processes
‘:I“ (Invelving People & Business Processes)

TR g Application
/@1 »‘LPI—C L e

(Reporting Analysis Control)

Data Abstraction
(Aggregation & Access)

Data Accumulation
(Storage)

(Data Element Analysis & Transformation)

Connectivity
(Communication & Processing Units)

e Edge (Fog) Computing

Physical Devices & Controllers
(The "Things" as IoT)

Figure 1 CISCO IoT seven-layer layer reference model.

4.2 | Security Challenges in IoT Environments

IoT deployments encounter several security limitations stem from the fundamental differences between IoT
and traditional networks. The security issues caused by several characteristics, including [8]:

* Limited Resources, in which IoT devices are constrained by available resources
* Devices diversity, IoT networks consist of several devices and applications

* Poor Security standards

* Changing Network topologies and architectures are constantly.

* Large Attack Surfaces across Physical, Network, and Application Layers.

4.3 | Review of Related Research

In this literature, we collect some surveys to provide an overview of IDS in several domains including 10T,
CTI mining, communication networks, network traffic analysis and metaverse. Most of the listed surveys and
literature reviews focus on I1DS in IoT representing the main focus of the literature. This section provide a
comparative analysis takes place in Table 1 to compare the existing survey papers based on some criteria
encompassing focus area of study, review methodology, existence of experimental study, taxonomy, survey
key findings, and future directions. In the following we will discuss the main contribution of the existing
surveys:

Nuaimi, Fourati, and Hamed [9] conducted a PRISMA based SLR on the recent ML, and DL approaches for
IDS in IIoT. The survey proposed a taxonomy classify the collected papers based on six categories including
placement strategy, detection method, validation metric, IIoT use case, and ML techniques. As a main finding
this research stated that, most of publications relays on centralized placement strategies for intrusion detection,
while employing a hybrid strategy integrating centralizes and distributed placement strategies for ID will
achieve better performance.
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The survey presented by Lee et al. [6] provides a comprehensive analysis on DL- based IDS by building a
taxonomy to classify the deep learning-based IDS schemes based on the utilized DL network. The survey also
propose prior survey issues in the context of deep learning-based IDS such as limited application of blockchain
technology, dependency on general network datasets without paying attention to the new emerging
cyberattacks and imbalanced datasets. As a future direction the authors of this work recommends using online

and incremental learning for mitigating real-time intrusion detection.

Asharf et al. [7] provides a literature review on ML and DL approaches for IDS in IoT networks, also surveys

vatrious dataset related IoT security research. The author extensively discussed the concept of 10T presenting
its architecture, protocols, systems vulnerabilities, and protocol-level attacks. This work provide a
comprehensive summary for challenges encountered by IoT environments and networks and suggested
solutions, highlighting IDS based ML and DL methods.

Wang et al. [10] briefly reviewed IDS and how they can be employed for detecting and classifying cyber-attacks
using techniques such as ML, DL, and SWEVO. The survey also investigated IDS taxonomy, feature
engineering techniques, IDS based computational intelligent methods, datasets, performance metrics and a
wide range of application for IDS. However as the previous work, the author focused on using representative
benchmark datasets as it impacts the quality of selected feature and then detection rates, also limitation of each
dataset discussed in the scope of the literature. As a future direction the review proposed using a hybrid
approach integrating ML and DL methods with SWEVO techniques to enhance intrusion detection efficiency.

The authors of this work Chou and Jiang [11] introduce a taxonomy of data-driven network intrusion detection
algorithms based on challenges to research studies and technical methods and analyzing public dataset within
the proposed taxonomy. One of the survey findings is that future research should focus on massive network
data, streaming and dynamic data, and real-world network data collection and availability. Also the survey
concluded that there is a lack of real-world network data, particularly from consumer networks, that can affect
the performance of model in simulated network within real-world network traffic data.

Sun et al [12] provides a survey covering cutting-edge CT1 mining researches which reveals its ability for
improving cyberattacks defense capabilities. This work classifying the existing work in this area of study based
on the objective of gathering CTI knowledge emphasizing the used approaches within the prior studies. Based
on the proposed classification the survey discusses the existing work focusing on cybersecurity entities and
events, cyberattack tactics and processes, hacker profiles, and signs compromise, vulnerability exploits,
malware deployment, and threat hunting. Additionally the literature reviewed existing challenges and potential
future directions.

Recently, Awadallah et al. [13] provides an overview over cybersecurity attacks related to data, identity, user
privacy, digital wellbeing, legal regulations, and NFT's using the metaverse enabling technologies. The survey
analyzes several Al techniques to mitigate cyber security in the metaverse, including user authentication,
intrusion detection systems, and blockchain security. As a main finding this work incorporates several
biometrics along with EEG and ECG to give liveness checks and validation of NFT transactions and users in
the metaverse. Moreover investigating several Al approaches for intrusion detection in the metaverse
highlighting their importance in securing blockchain and NFT transactions by detecting fraud, ensuring smart
contract security, and verifying content.

Kheddar et al. [14] provide an analysis of how RL-based intrusion detection systems automate real-time
detection, reduce false positives, and improve capabilities. Based on comparisons with previous surveys the
authors extends their research to cover various areas of study including 10T, ICSs, cloud computing, smart
grids, and various other domains. The survey proposed a taxonomy facilitating RL. and DRL techniques and
application particularly IDSs. Also covering important issues include adaptation to dynamic situations,
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scalability, interpretability, and robustness against adversatrial attacks. Additionally, the sutvey suggests
hybridizing classical IDSs with RL-based IDSs addressing energy efficiency and using LLMs.

Nascita et al. [15] extensively reviewed XAI approaches in NTA including traffic classification and prediction,
classifying cyberattacks and intrusion detection, covering methodologies, applications, requirements, issues
and future directions. The survey discusses the pivotal role of XAl in improving network security, performance
and reliability. Moreover challenges and gaps arises from implementing XAl in NTA.

Lampe and Meng [16] systematically reviewed IDSs in automotive domain ranging from inter-vehicles network
to intra-vehicles network facilitating applied methodologies and their performance rates in this domain. The
authors of this work comprehensively cover various methodologies including non-learning, traditional ML,
DL, and blockchain protected methods, also they provide a comparative analysis to their performance
according to several evaluation metrics. The articles also stated open challenges to automotive IDSs such as
false positive rate data and training requirements, detection accuracy and latency against consumed resources
and critical challenges with their subsequent solutions.

The survey paper provided by Zipperle et al. [17] reviewed PIDS, highlighting the drawbacks of traditional
IDS to cope with prevalence of sophisticated attacks due to their high false alarm rates. The survey discusses
several issues to PIDS including privacy concerns, run time overhead, scalable graph summarization techniques
inadequacy and insufficiency of real-world benchmark dataset. Also the survey proposed future directions
focused on maintaining privacy while capturing data provenance, reducing storage overhead using scalable
graph summarization methods utilize lossless and lossy reduction techniques and utilizing real-time intrusion
detection methods.

The article introduced by Halvorsen et al. [18] provide a mapping study and a review analysis on how GMLMs
can be employed to address ML based IDSs issues. Also this literature offer three areas where GMLMs can be
applicable to overcome issues with intrusion detection including penetration testing, GMLMs as IDSs and
supplementing datasets. The authors of the work successfully proven the effectiveness of GMLMs in detecting
attacks that can be ignored by ML based IDSs, moreover introducing new minority classes to the dataset and
then enhancing the performance of IDSs which trained on those new datasets. As a key finding the article
stated that GMLMs can perform better than other traditional methods for intrusion detection.

Table 1 Comparetive analysis of the existing survey papers

Ref year Focus area Review Exper Taxon Key findings Future
methodology iment omy directio
al ns
study

[9] 2023 1IOT PRISMA No No Promising performance = Yes
( of hybrid IDS placement
Perception strategy ~ over  other
layer, strategies , especially by
network integrating FL centralized
layer,  data placement strategy with
processing Blockchain  distributed
layer, and the placement strategy
application
layer)

[6] 2021  IOT(data A survey-based No Yes Effectiveness of DL in = Yes
processing systematic feature extraction and
layer), SDNs, = approach classification stages of
vehicular IDS.
networks, Highlighting prior
and  general researches issues such as:
environments (blockchain limited

usage, dependency on
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[7]

(0]

(1]

[12]

[13]

2020

2022

2022

2023

2024

10T None No Yes
(

Perception

layer,

network

layer, and the

application

layer)

10T A survey-based No Yes
( approach

Perception

layer,

network

layer, and the

application

layer)

10T None No Yes
(

Perception

layer,

network

layer, and the

application

layer)

Cyber Threat = CTI mining No Yes

Intelligence methodology

Mining

10T

(

Perception

layer,

network

layer)

Metaverse A survey-based No Yes
approach

general network datasets

and misuse of hybrid
schemes, etc.)

Challenges encountered = Yes
by IOT NIDS such as
(features limitations with
public dataset, high false

alarms rates and
complexity of ML and
DL NIDS, etc.).

Proposing solutions such
as (providing high quality
datasets and use of
ensemble ML and DL
over individual ML
algorithm, etc.)
Promising performance = Yes
of ML, DI, and SWEVO
in IDS.

Challenges:

(High False Alarms and
Zero-day Attacks
handling, etc.)

and future directions
such as:

(Incorporating
representative  datasets

for  efficient  feature
extraction and enhancing
ML and DL methods by

hybridizing them with
SWEVO, etc.)

Classifying  data-driven =~ Yes
network intrusion
detection techniques

based on challenges to
research  studies and
technical approaches.
Areas needed to be
addressed more in the
future due to lack of
studies: (big network
data, streaming  and
changing data, and real-
world data collection and
availability).

Developing CTI mining = Yes
methodology for
proactive  cybersecurity
protection.

Analyzing the state-of-
the-art methods for CIT

knowledge  acquisition
taxonomies.
Presenting different =~ Yes

cybersecurity attacks base
on features and enabling
technologies  of  the
metaverse to identify
attack incidents and how
they can spread through

metaverse.
Incorporates several
biometrics along with

EEG and ECG to give
liveness  checks and
validation of NFT
transactions and usets in
the metaverse.
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[14]

(5]

[16]

[17]

(18]

2024

2024

2023

2022

2024

Communicati
on Networks
including
IOT as a
subset

(

Perception
layer,
network
layer, and the
application
layer)
Network
Traffic
Analysis
including
10T

(

Network
layer, and the
application
layer)

Automotive
domain :
IVNs

ToV

ITS

Data
Provenance :
Information
flow among
system
entities

Penetration
testing
GMLMs as
IDSs
Supplement
datasets

Article collection

and selection

and Bibliometric

analysis

Wohlin [19]
systematic
approach

None

A survey-based
approach

A survey-based
approach

No

No

No

No

No

Yes

Effectiveness of Al for
1D in metaverse,
blockchain and NFT
transactions security.

Investigating new areas
like the combination of
Rl-based IDSs with

conventional — methods,
energy efficiency
considerations,

application of LLMs and
hybrid techniques.

analyzing existing
literature  gaps  and
suggesting future
directions

The Promising

petformance of XAl into
NTA, which improves
understanding of
network behavior and
decision-making.

Implementing XAl in

this  domain  posing
challenges including
(Insufficient ~ methods

and integration cost, etc.)

Systematically reviewing
intrusion detection
within automotive

domain (intra and inter
vehicles networks).

Highlighting the
petformance of IDSs
which based on non-
learning, traditional ML,
DL methods accordingly
and blockchain protected
methods as they applied
to federated IDSs.

Effectiveness of PIDS to
capture highly
sophisticated attacks and
reducing false-alarm rates

excelling traditional
1DSs.
Analyzing previous

surveys in this domain
offering gaps and future
directions.

Issues encountered by
traditional ML
approaches such as data
quality and performance
can be ovetcome by
GMILMs.

Effectiveness of GMLMs
with  introducing new
minority classes to the
dataset.

5| Deep Learning Architectures for Intrusion Detection

Yes

Yes

Yes

Yes

Yes



29 Walli, S. Int. j. Comp. Info. 10 (2026) 20-55

Several DL Techniques proposes by researches in this domain for the purpose of enhancing IDSs capabilities,
therefore a comprehensive study on DL methods proposed in this literature, Figure 2, Figure 3 present a
taxonomy of DL methods based on model architecture and learning strategy, and Figure 4 present common
DL application. Also in this section we review selected architectures to our experimental study.

The CNN-based model proposed by Aljuaid and Alshamrani [20] for enhancing IDSs within cloud computing
environments. Authors of this wok employed seven stages approach involved data preprocessing, feature
selection using Pearson correlation matrix analysis, SMOTE and down-sampling techniques to address data
imbalance. The used CNN architecture consists of three Conv1D layers, a batch normalization for reliable
training process, MaxPooling1D layers followed by a Flatten layer to converts the feature maps to one-
dimensional vector and another two fully connected dense layers. To prevent overfitting a Dropout layer with
a 0.5 dropout rate added, and the output layer is dense layer with SoftMax activation function.

The BiDLSTM model which is introduced by Imrana et al. [21] to overcome limitations of traditional LSTM
architecture for intrusion detection. The proposed architecture constructed from embedding layer to map
inputs to their representations, feeding it to bidirectional LSTM layers, the output then fed to fully connected
layers ReLLU activation function. Also a dropout layer of 0.2 dropout rate included to ensure that the model
doesn’t over-fit.

The RNN model proposed by Wang et al. [22] tackling intrusion detection. RNN architecture used in this
paper consists of five recurrent layers, five dropout and batch normalization layers featured to prevent
overfitting and output layers.

The DLSTM classifier with proposed by Kasongo and Sun [23] to be included within a wireless IDS. The
model structured from an input layer, a DLSTM Unit that include LSTM layers with and a Dense Feed
Forward Layer with ReLU and Sigmoid activation functions, also an output layer with softmax activation

function.

HCRNNIDS introduced by Khan [24] as a hybrid model that combines CNNs and RNNs within IDS to
enhances detection capabilities and reduce false alarm rates. Another hybrid model DCNNBILSTM proposed
by Hnamte and Hussain [25] that model combines CNN and BiLSTM layers, followed by a DNN layer for
IDS.

CNN-WDLSTM which proposed by Hassan et al. [26] is a hybrid deep learning approach that integrates
CNNs with WDLSTM to enhance intrusion detection within big data environments. The proposed model
comprise two 1D convolutional layers with ReLU activation function, one 1D maximum-pooling layer, one
1D WDLSTM layer, and one fully connected layer.

The GRU based DL atchitecture also introduced by Ansari et al [27] for predicting network intrusion alerts
by learning from historical alerts generated by malicious sources. The model contracted from three-layer GRU
layers stacked on the top of a dense layer. Also IDSs DL based architectures Learn compact representations
of data by using a encoder-decoder, which able to Learn to detect anomalies based on the difference between
what is expected versus what was actually received. This method has advantages in cases where labeled attack

data is rare or unavailable, also used for detecting new sophisticated attacks [6],[28].
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Figure 3 A Taxonomy of Deep Learning Applications

6| Experimental Analysis and Performance Evaluation

In this section we present a systematic analysis of experimental studies, evaluating deep learning-based
intrusion detection systems. We introduce dataset characteristics, evaluation methodologies, performance
metrics, and comparative results.
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6.1| Benchmark Datasets for IDS Evaluation

We have analyzed and compared a number of deep learning-based intrusion detection systems using
benchmark datasets including Edge-IIoTset, IEC 60870-5-104, and DNP3 Intrusion Detection datasets,
which contain various attacks, traffic types and operating conditions.

Edge-110oTset was published by [29] as inclusive realistic cybersecurity dataset collected under seven-layers
IoT testbed configured with demonstrative set of devices, protocols and cloud and edge setups. In this
testbed, the IoT traffics were generated from more than 10 IoT devices including ultrasonic sensor, flame
sensort, affordable digital sensors for measuring humidity and temperature, pH sensor meter, Soil moisture
sensor, water level sensor, soil sensor, etc. The data included fourteen categories of attacks associated with
IoT connectivity protocols. These attacks were belonged to five threats namely Man in the middle attacks,
Malware attacks, Information gathering (IG) attacks, Injection attacks, and DoS/DDoS attacks. It also
includes normal traffic samples. The Edge-IIoTset dataset contains a set of 61 highly correlated features from
a total of 1176 features, which are aggregated from several sources such as system alerts, logs, network traffic,
etc. The class distribution of samples across both training and test is introduced in Table 2.

Table 2 Summary of class distribution of the Edge-IIoTset data.

Attack family Attacks class Training samples  Testing samples Class weights
DoS/DDoS TCP SYN Flood 8198 2049 2.9553
DDoS
UDP flood DDoS 11598 2900 1.2170
HTTP flood 8396 2099 2.9642
DDoS
ICMP flood DDoS = 10477 2619 1.2706
I1G Port Scanning 7137 1784 6.5568
OS Fingerprinting 682 171
147.7989
Vulnerability 8050 2012
scanning attack 2.9504
Injection XSS 7634 1909
9.2961
SQL injection 8225 2057 2.8894
Uploading attack 8171 2043
3.9312
MiTM ARP Spoofing 286 72 121.8672
DNS Spoofing
Malware backdoor 7892 1973 5.9507
Password cracking = 7978 1994
2.9499
Ransomware 7751 1938 13.5420

IEC 60870-5-104 Intrusion Detection Dataset was published by Radoglou-Grammatikis et al. [30] for the
evaluation of Al based intrusion detection systems (IDS), it was developed within two H2020 projects,
ELECTRON: rEsilient and seLf-healed EleCTRical pOwer Nanogrid (101021936) and SDN-microSENSE:
SDN - microgrid reSilient Electrical eNergy SystEm (833955).A network topology of seven industrial entities,
a Human-Machine Interface (HMI), and three cyber attackers was used to construct this dataset. The data
contains twelve cyberattacks categorized into unauthorized access, traffic sniffing, MITM, and DoS attacks.
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It also include a normal traffic class. IEC 60870-5-104 Intrusion Detection Dataset contains eleven features
including complete network configuration, traffic logs, attack diversity, heterogeneity, and a well-structured
feature set. The data files include zip archives associated to entities and devices related to each attack, each
archive includes PCAP traffic data, flow statistics from CICFlowMeter, and results from the Python parser.
Table 3 and 4 introduce the class distribution of samples from the CICFlowMeter, and the Python parser

across both training and test.

Table 2 Summary of class distribution of the IEC 60870-5-104- CICFlowMeter data.

Attack family Attacks class Training samples Testing samples  Class weights
MITM MITM 914 391 1.0
traffic sniffing traffic sniffing 914 391 1.0
unauthorized C_RD_NA_1 914 391 1.0
access C_CI_NA_ 914 391 1.0
C_RP_NA_1 914 391 1.0
C_SC_NA_1 914 391 1.0
C_SE_NA_1 914 391 1.0
DOS M_SP_NA_1_DOS 914 391 1.0
C_CI_.NA_1_DOS 914 391 1.0
C_SE_NA_1_DOS 914 391 1.0
C_RD_NA_1_DOS 914 391 1.0
C_RP_NA_1_DOS 914 391 1.0

Table 3 Summary of class distribution of the IEC 60870-5-104- Python parser data.

Attack family Attacks class Training samples Testing samples  Class weights
MITM MITM 914 391 1.0
traffic sniffing traffic sniffing 914 391 1.0
unauthorized C_RD_NA_1 914 391 1.0
access C_CI_NA_ 914 391 1.0
C_RP_NA_1 914 391 1.0
C_SC_NA_1 914 391 1.0
C_SE_NA_1 914 391 1.0
DOS M_SP_NA_1_DOS 914 391 1.0
C_CI_NA_1_DOS 914 391 1.0
C_SE_NA_1_DOS 914 391 1.0
C_RD_NA_1_DOS 914 391 1.0
C_RP_NA_1_DOS 914 391 1.0

The DNP3 Intrusion Detection Dataset was tailored by Radoglou-Grammatikis et al. [31] as a benchmark
centered on the Distributed Network Protocol Version 3 (DNP3) to enhance the performance of Intrusion
Detection and Prevention Systems (IDPS).In this dataset, a network topology containing eight industrial
entities including eight industrial entities, one Human Machine Interfaces (HMI) and three cyber attackers
was used configure this dataset. The data encapsulate nine DNP3 related cyberattack scenarios related
unauthorized command execution and DoS attacks, in addition to a normal attack class. The DNP3 Intrusion
Detection Dataset contains eleven features including complete network configuration, detailed traffic logs,
labeled datasets, comprehensive interaction data, full capture files, protocol diversity, attack variations, system
heterogeneity, feature sets, and metadata. The dataset has nine attack folders each one contains PCAP files,
CICFlowMeter files, and labeled DNP3 flow statistics generated using a custom Python parser. Table 5 and
6 present the class distribution of samples from the CICFlowMeter, and the Python parser across both

training and test.
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Table 4 Summary of class distribution of the DNP3 - CICFlowMeter data.

Attack family Attacks class Training Testing Class weights
samples samples

DNP3 INIT_DATA 466 200 1.0

unauthorized DISABLE_UNSOLICITED 466 200 1.0

commands WARM_RESTART 466 200 1.0
REPLAY 466 200 1.0
DNP3_ENUMERATE 466 200 1.0
COLD_RESTART 466 200 1.0
DNP3_INFO 466 200 1.0
STOP_APP 466 200 1.0

DoS MITM_DOS 466 200 1.0

Table 5 Summary of class distribution of the DNP3 - Python parser data.

Attack family Attacks class Training Testing Class weights
samples samples

DNP3 INIT_DATA 466 200 1.0

unauthorized DISABLE_UNSOLICITED 466 200 1.0

commands WARM_RESTART 466 200 1.0
REPLAY 466 200 1.0
DNP3_ENUMERATE 466 200 1.0
COLD_RESTART 466 200 1.0
DNP3_INFO 466 200 1.0
STOP_APP 466 200 1.0

DoS MITM_DOS 466 200 1.0

6.2 | Evaluation Metrics

IoT Deep Learning Based IDS performance evaluated using a number of metrics including:
1. Accuracy

Calculates overall correctness, provide an explanation of results, but it can mislead on unbalanced data sets
[25].
(TP + TN) /(TP + TN + FP + FN)

2. Precision

Calculates the correctness of a prediction of an attack, which shows how many of the traffic flaggings are
correct, and not false alarms [23], [25].

(TP /(TP + FP))

3. Recall

Measures the ability of a system to detect all of the actual attacks that occurred [23].
(TP /(TP + FN))

4. F1-Score

Used to find a measure that balances precision and recall, allowing for a single metric that may be used to
compare two models when both metrics are equally important [25].

(2 x (Precision X Recall) / (Precision + Recall))
5. ROC Analysis and AUC
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Receiver Operating Characteristics (ROC) charts are used to display a classifiers performance at various
thresholds by displaying the true positive rate versus the false positive rate. The area under the ROC curve
(AUC) is a measure of the classifiers performance independent of the threshold selected. Values close to 1.0
indicate good separation between classes [24], [27].

Table 6 Summary of evaluation metrics for intrusion detection systems.

Metric Formula Interpretation
Accuracy (TP +'TN) / Overall
(TP + TN + correctness
FP + FN)
Precision TP / (TP + Reliability  of
FP) positive
predictions
Recall TP / (IP + Coverage  of
FN) actual positives
F1-Score 2 X (Precision  Harmonic
X Recall) / mean of
(Precision + precision  and
Recall) recall

6.3| Comparative Performance Analysis

This subsection presents comparative performance analysis of ten baseline architectures evaluated on three
IoT intrusion detection datasets: Edge-I11oTset, IEC 60870-5-104, and DNP3.

Performance on Edge-IIoTset Dataset

Table 8 presents quantitative comparison of ten baseline models on the Edge-IloTset dataset.
DCNNBILSTM records 97.56% accuracy, 97.56% F1-score, and 0.9996 AUC; HCRNNIDS records 97.34%
F1-score; CNN-WDLSTM records 97.45% F1-score. Hybrid CNN-RNN architectures record 1-2 percentage
points higher than single-architecture approaches in this evaluation.

Among single-architecture models, BiLSTM records 97.12% F1-score, DLSTM records 96.78% F1-score,
and vanilla RNN records 95.27% Fl-score. The 2.29 percentage point gap between DCNNBILSTM and
RNN illustrates performance variability across architected. RNN lower metrics caused by vanishing gradients,

which limiting effective learning of long-term dependencies.

Table 7 Quantitative Comparison of the results of different baselines on the Edge-IIoTset dataset

Models Accuracy Precision Recall Fl-score AUC
CNN]J20] 0.9690 0.9692 0.9690 0.9690 0.9995
BiLSTM[21] 0.9712 0.9713 0.9712 0.9712 0.9995
RNNJ[22] 0.9523 0.9541 0.9523 0.9527 0.9986
DLSTM]23] 0.9678 0.9679 0.9678 0.9678 0.9992
HCRNNIDS[24] 0.9734 0.9735 0.9734 0.9734 0.9996
DCNNBILSTM[25] 0.9756 0.9756 0.9756 0.9756 0.9996
CNN- 0.9745 0.9745 0.9745 0.9745 0.9996
WDLSTM[26]

GRU[27] 0.9601 0.9606 0.9601 0.9602 0.9991
AE-LSTM[32] 0.9689 0.9690 0.9689 0.9689 0.9992
SAAE-DNN]J28] 0.9721 0.9722 0.9721 0.9721 0.9995

Performance on IEC 60870-5-104, and DNP3 datasets
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Tables 9-12 show comparisons of the results from different baselines on the IEC 60870-5-104 data, as well
as on the DNP3- data, using both protocol-specific parser features and CICFlowMeter-based flow statistics.

DCNNBILSTM has much lower performance compared to Edge-IloTset (F1-score 97.56% and F1-score
56% from Table 9) shows how performance decline occurs when models experience domain-specific
industrial control protocols that contain insufficient discriminative information in standard network flow
statistics.

The CNN-WDLSTM and AE-LSTM perform 55% accuracy and 56% F1-scores, while BiLSTM, DLSTM,
and GRU have very poor performances at approximately 40-41% accuracy. This indicates that these recurrent
architectures alone are unable to capture industrial protocol patterns without complementary spatial feature
extraction via convolutional layers. The difference in performance between hybrid (55-56%) and single
architecture recurrent models (40-41%) is 15-16 percentage points, much larger than the 2-3 percentage point
differences in Edge-IIoTset. This suggests that the architecture used becomes much more important when
working with challenging domain-specific datasets.

Table 8 Quantitative Comparison of the results of different baselines on the IEC 60870-5-104-

CICFlowMeter dataset.

Models Accuracy Precision Recall Fl-score AUC
CNN]J20] 0.53 0.61 0.53 0.54 0.90
BiLSTM[21] 0.41 0.44 0.41 0.38 0.83
RNNJ[22] 0.51 0.67 0.51 0.52 0.89
DLSTM[23] 0.40 0.44 0.40 0.39 0.83
HCRNNIDS[24] 0.54 0.61 0.54 0.54 0.90
DCNNBILSTM][25] 0.56 0.61 0.56 0.57 0.90
CNN- 0.55 0.61 0.55 0.56 0.90
WDLSTM][26]

GRUJ[27] 0.41 0.44 0.41 0.39s 0.83
AE-LSTM][32] 0.55 0.60 0.55 0.56 0.90
SAAE-DNN]28] 0.52 0.62 0.52 0.51 0.89

Protocol-specific feature extraction improves performance (Table 10). CNN-WDLSTM achieving 55%
accuracy and 54% Fl-score using custom IEC 60870-5-104 parser features that capture protocol-layer
characteristics. Performance remains modest compared to Edge-IIoTset, reflecting complexity of industrial
control protocol traffic characterized by limited traffic volume which requires deep domain expertise for
effective feature engineering.

Table 9 Quantitative Comparison of the results of different baselines on the IEC 60870-5-104-
Python parser dataset.

Models Accuracy Precision Recall Fl-score AUC
CNN|[20] 0.54 0.65 0.54 0.53 0.90
BiLSTM[21] 0.53 0.64 0.53 0.51 0.90
RNN|[22] 0.53 0.66 0.53 0.51 0.90
DLSTM]|23] 0.53 0.62 0.53 0.51 0.90
HCRNNIDS[24] 0.54 0.62 0.54 0.54 0.90
DCNNBILSTM[25] 0.54 0.63 0.54 0.53 0.91
CNN- 0.55 0.61 0.55 0.54 0.91
WDLSTM[26]

GRU[27] 0.54 0.61 0.54 0.53 0.90
AE-LSTM[32] 0.54 0.62 0.54 0.53 0.92

SAAE-DNN|[28] 0.53 0.64 0.53 0.51 0.93
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DNP3 dataset evaluation shows higher metrics with CICFlowMeter features compared to IEC 60870-5-104,
DNP3 attack patterns may exhibit distinctive flow-level signatures (Table 11). HCRNNIDS and
DCNNBILSTM record 91% accuracy, 91% recall, and 91% Fl-score with 0.99-1.00 AUC under these
experimental conditions. High metrics on DNP3 may relate to the protocol distinctive characteristics.

Table 10 Quantitative Comparison of the results of different baselines on the DNP3 -

CICFlowMeter dataset.

Models Accuracy Precision Recall F1-score AUC
CNN]J20] 0.87 0.92 0.87 0.87 0.99
BiLSTM[21] 0.81 0.88 0.81 0.79 0.98
RNN|[22] 0.87 0.92 0.87 0.86 0.99
DLSTM][23] 0.81 0.88 0.81 0.79 0.98
HCRNNIDS[24] 0.91 0.93 0.91 0.91 0.99
DCNNBILSTM[25] 0.91 0.92 0.91 0.91 1.00
CNN- 0.88 0.93 0.88 0.88 0.99
WDLSTM[26]

GRU[27] 0.82 0.89 0.82 0.80 0.98
AE-LSTM|[32] 0.86 0.91 0.86 0.86 0.99
SAAE-DNN]J28] 0.86 0.91 0.86 0.86 0.99

DNP3 parser features performance (Table 12), with CNN, RNN, HCRNNIDS, DCNNBILSTM, and CNN-
WDLSTM all achieving 94% accuracy, 95% precision, and 94% Fl-score with perfect 1.00 AUC. The
convergence of multiple architectures to a 94% performance indicates that protocol-aware feature engineering
is able to extract discriminative attack signatures, as well as reduce the relative importance of architectural
complexity when sufficient high quality domain specific features exist. BILSTM shows poor performance
(accuracy = 69%, 1 score = 67%), compared to other datasets in which it has performed well, demonstrating
that the choice of architecture is interdependent with the representation of features and characteristics of the
dataset.

Table 11 Quantitative Comparison of the results of different baselines on the DNP3 - Python parser

dataset.

Models Accuracy Precision Recall F1-score AUC
CNN]J20] 0.94 0.95 0.94 0.94 1.00
BiLSTM[21] 0.69 0.75 0.69 0.67 0.96
RNN|[22] 0.94 0.95 0.94 0.94 1.00
DLSTM[23] 0.72 0.82 0.72 0.71 0.93
HCRNNIDS[24] 0.94 0.95 0.94 0.94 1.00
DCNNBILSTM[25] 0.94 0.95 0.94 0.94 1.00
CNN- 0.94 0.95 0.94 0.94 1.00

WDLSTM[26]
GRU[27] 0.74 0.86 0.74 0.74 0.93
AE-LSTM][32] 0.93 0.95 0.93 0.93 1.00

SAAE-DNN|[28] 0.91 0.94 0.91 0.91 0.95
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Figure 4 Confusion Matrices of different baselines on the Edge-IIoTset data.
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Figure 5 Confusion Matrices of different baselines on the IEC 60870-5-104- CICFlowMeter data.
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Figure 6 Confusion Matrices of different baselines on the IEC 60870-5-104- Python parser data.
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Figure 7 Confusion Matrices of different baselines on the DNP3 - CICFlowMeter data.

CNN/[20]

BiLSTM|21]

Confusion Matrix

Confusion Matrix

™
[o— spuemmeempion JSE o o o o
50 =
[— 0 ecomassance 31 n o 0 s o =
a0 50
Resto tack Nl Az 0 o
H 20 3 200
4 4
—. Do vsokrea - 1 0
- 130 - 150
o - 100 o -+ o A -
= =
spsoicaon- 0 o o o [NES sop soptcaon - 0 .
. . . . : ; f
§ i Bz § § I
§ i i §
& s &
Pedicted e
Confusion Matrix Confusion Matrix
™
[o— spuemmeempion JSE o o o o
50 =
[— 0 ecomassance 31 n o 0 s o =
a0 50
Resto tack Nl Az 0 o o
H 20 3 200
4 4
—. ose vssirea - 0 0 0
- 130 - 150
o - 100 w0 o 0 -
= =
spsoscaon- 0 o o o [NES fpa— 0
. . . . : ; f
I T S S B O | ;
§ i Bz § § I
§ i i §
& s &
Pedicted e
Confusion Matrix Confusion Matrix
™ o
[— ——
=0 =
J— = acomasance - -
250 250
N P
£ 200 El 200
4 4
Oiable Unslcked - PR—
Lo -
- w0 omal - w0
™ =

Stop_Appication - 0 o

¥

Repiay_attack -

b
a

Disable_Unsolicited -

[ TR

System_ntermuption

medicred

Stap_Appication -

Peconnamsance
Replay_sttack -

System mtermuption

predictad

CNN-WDLSTM[26]

GRU[27]




45 Walli, S. Int. j. Comp. Info. 10 (2026) 20-55

Confusion Matrix Confusion Matrix
o0
[ — on— B . .
L w0 =
[— 20 [RO—— n f s om0 0
- 20
—— Ny Atack - 0 0 o
H 200 H 200
4 4
— Db unsotcned - 0 0 0
- 130 - 150
-, 00 Nowal - 0 0 0 -
- -
JRp— PR o | am [ :
) . . . . . . ) f
3 i & 0§ § 3 | S T S T £
H L i L A EH
: i E 2 § £ H Pos g
§ § § § § #
& s 5 s
et s
Confusion Matrix Confusion Matrix
[ — F— . B » T -
- =
[— ™ Fecomassance - 80 f s om o 0
20 20
—— Ny Atack - 0 0 o
H 200 H 200
4 4
— Db unsotcned - 0 0 0
- 150 - 150
o - -0 wormal - 0 o o -
- -
JRp— PR o | JR— .
) . . . . . . ) f
3 i & 0§ § 3 | S T S T £
H L i L A EH
: i E 2 § £ H Pos g
§ § § § § #
& s 5 s
et s

Figure 8 Confusion Matrices of different baselines on the DNP3 - Python parser data.
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Figure 9 ROC curves of different baselines on the Edge-IToTset data by class
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Figure 11 ROC curves of different baselines on the IEC 60870-5-104-

CICFlowMeter data.
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Figure 13 ROC curves of different baselines on the DNP3 - CICFlowMeter data.
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Figure 14. ROC curves of different baselines on the DNP3 - Python parser data.

7| Discussion

In this section we analyses the findings of the systematic literature review to evaluate ongoing issues, as well

as areas for future research

Intrusion Detection Systems have many issues relating to availably of dataset, the quality of those datasets
and relevance to IDS different domains. Although there is a large amount of performance differences across
all of the testing scenarios. Comparative analysis shows metric differences when models are evaluated across
domains, DCNNBILSTM records 97.56% F1-score on Edge-IloTset but only 56-57% on IEC 60870-5-104
with CICFlowMeter features, representing a 40-percentage-point difference illustrating generalization
challenges. Similarly, BILSTM archives high Edge-IIoTset metrics 97.12% F1-score and records lower results
on DNP3 protocol-specific features (69% accuracy, 67% F1-score), suggesting architectural choices interact

with feature representations and protocol characteristics in complex ways.

IoT-specific datasets remain scarce, with Edge-IloTset, IEC 60870-5-104, and DNP3 exceptions addressing
consumer IoT, power grid communications, and SCADA systems. Even specialized datasets exhibit
limitations such as class imbalance, limited temporal coverage, and controlled settings that misses operational
noise and protocol implementation variations.

IoT devices operate under severe computational, memory, and energy constraints that challenge deployment
of sophisticated deep learning models. Models deployment needs resource requirements for high-complexity

architectures, hybrid models requiring edge Al accelerators or cloud deployment.

Effective intrusion detection in IoT environments demands real-time processing capabilities enabling timely
threat response. Critical infrastructure applications require low latency to enable protective relay actions
before failures. Hybrid architectures recording higher accuracy metrics which impose higher latencies than
lightweight models. Only lightweight architectures may satisfy latency constraints, and accepting some

accuracy penalty.

Systematic comparative analysis across diverse datasets presents consistent architectural patterns influencing
detection metrics, providing evidence for architecture selection in operational deployments. Hybrid CNN-
LSTM architectures rank among top scorers regardless of dataset characteristics, DCNNBILSTM records
rank 1 on Edge-IloTset (97.56% F1), rank 1 on IEC 60870-5-104 CICFlowMeter (57% F1), rank 1 on DNP3
CICFlowMeter (91% F1), and rank 1 on DNP3 parser features (94% F1), indicating consistent cross-dataset
performance. HCRNNIDS and CNN-WDLSTM maintain top three rankings across four of five evaluation
scenarios, indicating that hybrid architectures combining CNN spatial feature extraction with RNN temporal
modeling address diverse attack.
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Metric differences between hybrid architectures vary across datasets, providing insights about when
architectural representation appears to be effective. On Edge-IloTset, the gap between DCNNBILSTM
(97.56% F1) and BILSTM (97.12% F1) reaches only 0.44 percentage points, show that architectural
complexity is regarded when datasets contain strong discriminative features. On IEC 60870-5-104
CICFlowMeter features, hybrid architectures (DCNNBIiLSTM: 56%, CNN-WDLSTM: 55%) record 14-16
percentage points higher than recurrent-only models (BILSTM: 41%, DLSTM: 40%, GRU: 41%), indicating
architectural sophistication appears more beneficial for challenging domains where generic features provide
limited discriminative power.

Recurrent only architectures shows highly variable metrics. BILSTM records 97.12% F1-score on Edge-
IToTset, 53% accuracy on IEC 60870-5-104 parser features, 69% accuracy on DNP3 parser features, prove
that temporal models require careful feature for consistent results. Vanilla RNN records lower metrics across
all scenarios (Edge-IloTset: 95.27%, IEC CICFlowMeter: 51%, DNP3 CICFlowMeter: 87%, DNP3 parser:
94%), that causes by vanishing gradient limitations, protocol-specific DNP3 features relate to shorter
temporal dependencies in that dataset. Autoencoder-based approaches (AE-LSTM, SAAE-DNN)
demonstrate consistent metrics across all datasets, prove that unsupervised pretraining may provide stable
initialization reducing overfitting risk.

8| Conclusion and Future Work

Our comparative study evaluate both the performance of ten different deep learning architectures and the
relative merits of each model using a combination of three IoT-specific datasets Edge-IloTset, IEC 60870-
5-104, and DNP3. The results of this comparison provide insights into architectures in terms of the degree
to which they generalize to other application contexts.

CNN-LSTM hybrid architectures performed better than non-hybrid architectures in all cases, CNN-BiLSTM
outperformed the baseline CNN architectures at all three datasets, Edge-IIoTset with a 97.56% F1-score,
IEC 60870-5-104 with a 56-57% F1l-score, and DNP3 with a 91-94% F1-score, the CNN-BiLSTM
architecture also outperformed the baseline architectures at all three datasets depending on the specific
characteristics of the dataset used. The BiLSTM model has shown strong performance on the Edge- IloTset
dataset (97.12% accuracy) but poor performance on the DNP3 dataset (69% accuracy). These results illustrate
the complexity of interactions between the features of data and the architecture of deep learning models.
Models that were able to detect anomalies in IoT traffic at high F1-scores than others are likely to exceed the
processing capabilities of most IoT devices. Therefore, many of the models need to be deployed with edge
Al accelerators. Energy constraints are still one of the primary limiting factors for the deployment of
sophisticated models in battery powered IoT applications.

There are four major areas that require additional study, The development of architectures optimized for edge
constraints using neural architecture search to improve F1-scores under resource limited conditions, Cross-
domain transfer learning, Explainable Al methods that interpret the errors made by anomaly detection
models, Development of comprehensive IoT datasets with emerging protocols and testing anomaly detection
models in the presence of adversarial attacks.
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