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Abstract

Artificial Intelligence (AI) and Business Intelligence (BI) are increasingly transforming nutritional science by
enabling precise dietary assessment, personalized nutrition planning, and data-driven health monitoring. This
review provides an integrated analysis of methodological advancements in Al and BI techniques applied within
nutrition research. A structured search was conducted across PubMed, Scopus, Web of Science, Google Scholar,
and ScienceDirect. After removing duplicates and applying predefined inclusion and exclusion criteria—focusing
on studies that utilized Al, machine learning, deep learning, or BI frameworks for dietary assessment, nutrient
estimation, predictive modeling, or personalized dietary recommendations—a total of 73 studies met the eligibility
criteria and were included in the final synthesis. The review categorizes methodological approaches, highlights their
strengths and limitations, and evaluates their practical implications for clinical and public-health nutrition. While
Al holds significant promise for improving accuracy, scalability, and personalization in nutrition, several challenges
remain, including dataset limitations, model interpretability, and ethical considerations. The findings emphasize the
need for culturally diverse datasets, explainable models, and integrated AI-BI architectures to advance future
research and real-world implementation. Integrating Al and nutrition, it still faces several data-related,
methodological, and ethical limitations.

Keywords: DMachine Learning, Nutrition, Deep Learning, Artificial Intelligence.

1 |Introduction

1.1 | Background and Motivation

In general, the term "food nutrition" refers to the heat energy and nutrients that are obtained by the human
body from the consumption of food. These nutrients include things like protein, fat, carbs, and so on [1].
Nutrition provides numerous health benefits, including disease prevention, management, and overall well-
being. Controlling one's nutritional intake is critical for disease prevention and management. Proper nutrition
is crucial for disease prevention, management, and treatment, with a well-established link between the two|2].
Nutritional management is essential for managing chronic diseases like diabetes, hypertension, and
cardiovascular disease. Controlling sodium, sugar, and saturated fat intake can aid in managing and controlling
these disorders. Diabetes patients must monitor and regulate their carbohydrate intake to maintain healthy
blood sugar levels. Balanced meals and portion control improve blood glucose control, and limiting salt
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consumption is crucial for regulating blood pressure. Consuming fruits, vegetables, whole grains, and avoiding
processed foods can improve blood pressure regulation [3]. Dietary recording technologies include web-based
tools, mobile apps, camera-based image analysis, wearable sensors, and classic approaches such as Food
Frequency Questionnaires (FFQs) or 24-hour dietary recording. Previous methods for documenting food
consumption have been inaccurate due to difficulties with determining portion sizes and restricted ingredient
lists [4].

A clearer methodological distinction can be drawn between classical machine learning approaches and the
more recent deep learning and large language model-based methods. Classical ML techniques—including
Decision Trees, Random Forests, Support Vector Machines, Naive Bayes, and logistic regression—have
traditionally been applied to structured nutritional datasets, focusing on tasks such as nutrient prediction,
malnutrition risk classification, and obesity forecasting. These models depend heavily on handcrafted features
and domain-driven preprocessing. In contrast, deep learning methods, particularly Convolutional Neural
Networks, generative models, and multimodal transformers, learn hierarchical representations directly from
raw data and have become dominant in food-image recognition, calorie estimation, and ingredient detection.
More recently, large language models have introduced a new category of Al tools capable of conversational
nutrition counseling, automated diet planning, and multimodal reasoning that integrates textual, visual, and
clinical data. This progression from classical ML to deep learning and LLLM-based systems reflects the growing
availability of large datasets, increased computational power, and broader ambitions for automation and

personalization in nutrition research.

Al has experienced exponential growth over the past decades, as shown in Figure 1, leading to the emergence
of large deep networks and Al agents with remarkable capabilities, sometimes achieving performance on par
with humans across various sectors [5]. These technological advancements have paved the way for substantial
opportunities in numerous areas that contribute to human well-being [6]. Among these areas, nutrition is one
where Al presents previously unheard-of possibilities and revolutionary breakthroughs. Al can precisely
evaluate food intake, forecast each person's nutritional requirements, and create customized meal plans based
on medical problems, cultural preferences, and health objectives by utilizing machine learning, computer
vision, and data-driven analytics. Al-powered solutions are transforming the way that people, doctors, and
researchers approach eating and health, from automated food detection to precision nutrition informed by
genetic and metabolic data. These developments have the potential to streamline clinical and research
workflows, increase public health outcomes, prevent chronic diseases, and improve dietary adherence [7].
Nutrition is a multifaceted discipline that examines the relationship between diet, health, and disease [§].
Nutrition is considered the basis for maintaining life activities, promoting growth and development,
preventing chronic diseases, improving mental health, and maintaining a good physiological state [9].
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Figure 1. Number of Scopus search results for “artificial intelligence” with an exponential growth in the number of
published articles between 2016 and 2024.
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The world is currently experiencing a global obesity epidemic, with prevalence rates rising at alarming levels,
particularly in low- and middle-income countries. In many cases, the increasing incidence of obesity is
accompanied by persistent undernutrition, with both conditions coexisting within the same household. This
phenomenon, known as the double burden of malnutrition, encompasses both undernutrition and
overnutrition. Overnutrition refers to excessive consumption of caloties and/or macronutrients, while
undernutrition involves deficiencies in essential nutrients. Both forms of malnutrition are associated with
numerous adverse health outcomes, making the development of practical solutions a pressing public health
priority [10].

In this context, Al emerges as a powerful tool capable of driving transformative change in the field of
nutrition. Through machine learning, deep learning, and natural language processing, Al can enhance
personalized dietary recommendations and improve overall health and quality of life . It can accurately
estimate the nutritional content and calorie counts of dishes [11]. assist in monitoring and managing dietary
intake [12]. and even generate customized meal plans for individuals [13]. These capabilities open the door to
more precise and effective nutritional strategies that can help reduce the double burden of malnutrition and
improve health outcomes on a global scale.

The purpose of this research is to provide a comprehensive analysis of the current applications of Al in the
field of nutrition, with a particular focus on its diverse roles in research and practice. By systematically
examining these areas, the review aims to explore and evaluate how Al is being applied within nutrition and
to understand its potential future impact. The investigation was guided by the central research question: In
what ways have AI, machine learning (ML), and deep learning (DL) been utilized to improve the
understanding, monitoring, and optimization of nutritional outcomes?

To address this question, the study pursued the following objectives:

e Comprehensive literature review — Examine the existing body of research on Al applications in
nutrition, identifying studies that employ technologies such as ML and DL for vatious purposes
within the discipline.

e (lassification of Al methods — Otrganize and categorize the Al techniques used in nutritional
research, with particular emphasis on ML and DL approaches.

e Methodological assessment — Evaluate the rigor and quality of the selected studies based on
established criteria to ensure that conclusions are both reliable and valid.

e  Challenges, limitations, and prospects — Identify the barriers to integrating Al into nutritional science,
discuss the limitations of current research, and propose future research directions informed by the
review’s findings.

Despite the rapid growth of Al applications in nutrition, current research remains limited by several critical
gaps. Most studies rely on small or culturally homogeneous datasets, which restrict generalizability and bias
model performance. Existing approaches often focus on isolated tasks—such as food recognition, chatbot
interaction, or predictive modeling—rather than providing integrated, multimodal frameworks capable of
supporting real-world nutritional decision-making. Furthermore, few Al-driven systems have undergone
long-term clinical validation, and their methodological assumptions are rarely compared systematically. These
gaps highlight the need for a comprehensive review that synthesizes methodological advancements, evaluates
their limitations, and identifies opportunities for developing more robust, transparent, and clinically relevant
Al and BI systems in nutrition.

The main contributions of this research are as follows:

The novelty of this review lies in its integrated examination of Al, machine learning, deep learning, business
intelligence, and large language model applications within nutrition—an intersection that has not been



59 Abdelaziz et al. | Int. j. Comp. Info. 10 (2026) 56-77

comprehensively addressed in prior surveys. Unlike earlier reviews that focus primarily on food recognition,
dietary assessment tools, or predictive modeling, this study offers a structured methodological synthesis that
spans multiple analytical domains while also incorporating ethical, dataset-related, and system-level
considerations. This multidimensional perspective provides a more holistic understanding of current advances

and gaps in Al-driven nutrition research.

e  Systematic mapping and classification — This review systematically maps and categorizes existing
studies at the intersection of Business Intelligence (BI) and nutrition, highlighting thematic trends
and emerging technological directions.

e Identification of research gaps — It identifies critical gaps in the literature, particularly the limited
exploration of integrating real-time dietary monitoring with predictive analytics

e Methodological insights — The study provides a comparative evaluation of BI techniques—including

dashboards, data visualization, data mining, and machine learning—applied in nutrition contexts.

e  Practical implications — It emphasizes the practical relevance of Bl adoption for enhancing evidence-

based decision-making among nutrition professionals, policymakers, and the food industry.

e  Future research directions — It proposes opportunities for future work that combine BI with Internet

of Things (IoT) technologies, wearable health devices, and personalized nutrition systems
2 | Related Work

The integration of Artificial Intelligence (Al) into the field of nutrition has evolved significantly, with
applications ranging from image-based dietary assessment to personalized decision-support tools. Prior
studies can be broadly categorized into four major thematic areas: food recognition and portion estimation,
conversational agents and chatbots, personalized dietary recommendation systems, and predictive modeling
for health and nutrition outcomes. Each of these areas has contributed distinct methodological advancements

while addressing specific challenges in dietary monitoring and nutritional science.

For clarity, this review distinguishes between the main analytical domains. Al is the broader field, within
which ML represents data-driven predictive modeling, and DL refers to neural-network—based approaches
widely used in food recognition. BI serves as the data-management and visualization layer that operationalizes
Al outputs. LLMs such as ChatGPT function as advanced language-processing models enabling
conversational nutrition support. These distinctions provide a clear framework for interpreting the methods
reviewed. Figure 2 shows A conceptual overview illustrating the hierarchical relationship between AL, ML,
and DL, and the distinct yet complementary roles of Large Language Models (LLMs) and Business
Intelligence (BI).

Artificial Intelligence (Al)

Broad field emulating cognitive task

!

Machine Learning (ML) ‘

Data-driven predictive mode

|

L Deep Learning (DL) J

Neural networks for images & text

!

Large Language Models (LLMs) ‘ Business Intelligence (BI)

ChatGPT, generative Al Dashboards & Data Analytics

Figure 2. Conceptual Relationships Among AI, ML, DL, LLMs, and BI.



Methodological Advances of Al and Business Intelligence in Nutrition: Techniques, Applications. .. 60

2.1 | Food Recognition and Portion Estimation

Over the past decade, computer vision and deep learning have become increasingly important in automating
dietary assessments, particularly in food recognition and portion size estimation. Abdusalomov et al. (2022)
applied Convolutional Neural Networks (CNNs) to classify food items and estimate their caloric values,
achieving notable accuracy in image-based nutrition monitoring. In a similar direction [14]. Papastratis et al.
(2021) designed a mobile application capable of identifying meal photos and evaluating diet quality using the
Diet Quality Index—International (DQI-I). Their work demonstrated the potential of artificial intelligence to
be integrated into everyday dietary tracking, although the systems still struggled with dataset limitations,
cultural variations in eating habits, and the inherent difficulty of estimating portion sizes from two-

dimensional images [5].

More advanced techniques have continued to emerge. Sun et al. (2023) proposed an image recognition
framework based on Dino V2, which surpassed previous models in accuracy. The framework was tested in
the context of type 2 diabetes management, offering nutritional advice and meal tracking support. Despite
promising results, the system faced scalability concerns, largely due to the constraints of large language models
(LLMs) in handling wide-ranging queries [15]. Meanwhile, Lei et al. (2020) extended recognition tasks by
developing a recipe generation model that incorporates nutritional data. Their approach, which combined
autoencoders, non-negative matrix factorization (NMF), and a fused autoencoder (FAE), helped address the
issue of sparse data in large recipe collections and revealed meaningful correlations between ingredients and

nutrient composition [16].

Even higher recognition rates have been reported in more recent studies. Vasudha et al. (2024) used deep
CNNs to achieve 99.89% accuracy in food recognition and calorie measurement, while also providing a user-
friendly web interface for accessibility. Shi et al. (2024) introduced a hybrid method that combines deep
learning with 3D reconstruction techniques to estimate calorie intake from dishes and vegetables, achieving
a classification accuracy of 83.74%. Although this approach mitigated some of the shortcomings of 2D
estimation, the variability of food shapes and sizes continued to pose challenges for 3D modeling [17].

To better address cultural dietary diversity, Shen et al. (2020) built a client—server system trained on large
datasets that included culturally specific meals. This strategy improved classification performance through the
more effective use of pre-trained models, but recognition of complex or mixed foods remained problematic
[18]. More recently, Feng et al. (2025) tailored their model to Chinese cuisine by combining online recipe data
with the Chinese Food Composition Tables to produce detailed nutritional labels. Despite strong results,

dataset imbalance remained a limiting factor [19].

Taken together, these studies highlight the steady advancement of Al-driven food recognition systems. The
field has progressed from basic CNN classifiers to multimodal frameworks that integrate visual, textual, and
structured nutritional information. Nevertheless, challenges such as cultural bias in datasets, the difficulty of
accurately estimating portion sizes, and the complexity of identifying mixed dishes remain unresolved. These
gaps highlight the need for more robust, generalized, and clinically validated solutions

2.2 | Conversational Agents and Chatbots

The use of conversational Al in nutrition counseling has grown rapidly, as these systems offer real-time,
interactive, and scalable dietary support. Kacar et al. (2021) developed a chatbot that combined natural
language processing (NLP) with machine learning to act as a virtual dietitian, providing instant feedback on
users’ food choices. Although engagement levels were high, the system faced difficulties in tailoring
recommendations to individual preferences and adapting across different cultural contexts.

The rise of large language models (LLMs) has further enhanced the naturalness and fluidity of dialogue. For
example, Haman (2023) noted that ChatGPT-like models enable more engaging and human-like interactions.
However, despite these improvements, issues such as limited explainability, potential inaccuracies, and ethical

concerns continue to restrict their adoption in clinical nutrition practice [20]. Kaya et al. (2025) expanded
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chatbot capabilities by incorporating the Diet Quality Index—International (DQI-I) to assess vatious aspects
of dietary quality, including balance, adequacy, and moderation. Their findings suggested that while chatbots
can effectively evaluate general diet quality, they are less reliable in ensuring accurate macronutrient and fatty
acid distributions [21].

Other studies have benchmarked Al-generated diet plans against official dietary guidelines. For instance,
Bayram et al. (2025) compared meal plans produced by conversational Al with the Turkish Dietary Guidelines
(TDG-2022). Results revealed frequent underestimation of calorie requirements and insufficient coverage of
macro- and micronutrients. Although these Al-driven systems demonstrated short-term consistency and
accuracy, their responses often vatied over time, and they lacked the ability to provide sustainable, long-term
nutritional planning [22].

2.3 | Personalized Dietary Recommendation Systems

Personalization is a key factor in dietary adherence, and recent advances in artificial intelligence have enabled
the design of systems that tailor meal plans to an individual’s health profile, lifestyle, and cultural background.
Wang et al. (2020) proposed hybrid machine learning approaches that integrated patient health data with
nutritional databases to deliver customized diet plans. Similarly, reinforcement learning has been applied to
adjust dietary suggestions dynamically, based on user behavior and compliance, thereby improving relevance
and long-term engagement. Despite these advantages, such systems require extensive data collection, raising
concerns about scalability and privacy [23].

Building on this direction, Liu et al. (2024) introduced an Al framework grounded in the Taiwanese dietary
guidelines. Their model incorporated multiple food sources—including home-cooked dishes, restaurant
meals, and recipes—to achieve more precise calculations of nutrients. While this significantly improved the
accuracy of recommendations, it also created challenges in harmonizing and standardizing diverse datasets.
Earlier [12]. Mazzei et al. (2015) had presented the idea of a “virtual dietitian,” combining mobile technology
and Al to evaluate recipes, provide adaptive nutritional advice, and even allow controlled deviations from
strict dietary rules to encourage user compliance. However, their system encountered difficulties in estimating
liquid quantities, which affected the accuracy of nutrient assessments [13].

The impact of personalized nutrition systems has also been tested through mobile health (mHealth)
interventions. Zahid et al. (2023) conducted a randomized controlled trial that compared an Al-driven diet-
tracking application with traditional pamphlet-based counseling. Participants using the Al tool showed
modest improvements in weight control and nutritional intake, although the study's duration was limited,
preventing long-term conclusions [24]. Similatly, Dias et al. (2022) developed the PROTEIN mobile
application, powered by Al, which was evaluated through the modified Technology Acceptance Model
(mTAM). Their results highlighted the importance of usability, personalization, and perceived utility in
shaping adoption and behavior change. Nonetheless, the study faced constraints, including a small sample
size and limited generalizability [25].

Overall, these works demonstrate how Al can support individualized dietary recommendations, while also
highlighting the ongoing need for larger datasets, stricter standardization, and clinically validated evidence

before such systems can be widely adopted in real-world nutrition management.

2.4 |Predictive Modeling for Health and Nutrition Outcomes

Artificial intelligence has also been widely applied to forecasting health risks associated with dietary behaviors.
A range of machine learning algorithms—such as Random Forests, Gradient Boosting, and Deep Neural
Networks—have been employed to estimate the likelihood of conditions including obesity, diabetes
progression, and metabolic disorders. Haman (2022), for example, combined dietary intake records with
demographic information to predict obesity trends, showing that explainable Al (XAI) can provide clinically
meaningful insights. However, many of these predictive studies are limited by skewed datasets, insufficient
longitudinal validation, and weak integration with clinical health records.
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Research in specific population groups has also demonstrated the potential of predictive modeling. Siy Van
et al. (2021) compared classical statistical approaches with machine learning techniques to identify
undernutrition among school-aged children in the Philippines. Their findings indicated that Random Forests
offered the highest predictive accuracy, although the dataset lacked national representativeness [26]. Likewise,
Aryuni et al. (2023) applied supervised learning models, including Decision Trees (C4.5), K-Nearest
Neighbors (KNN), and Naive Bayes, to assess malnutrition risks in Indonesian children under five. The
Decision Tree approach achieved the strongest results, with an Fl-score of 91.67% and an accuracy rate of

89.87%, underscoring the potential role of Al in early detection of stunting and wasting [27].

Taken together, these studies demonstrate that predictive modeling can serve as an effective tool for
anticipating nutritional and health outcomes. Nevertheless, they also highlight key limitations, such as small
and imbalanced datasets, a lack of large-scale longitudinal studies, and challenges in clinical integration.
Addressing these shortcomings is crucial to advancing predictive models from experimental applications to

reliable, real-world healthcare solutions.
2.5 | Critical Observations

Despite significant progress in various thematic areas, several recurring limitations remain evident in current
research. A major issue is the heavy reliance on small or culturally homogeneous datasets, which restricts the
generalizability of findings and limits the applicability of models across diverse populations. Without broader,
more representative data, the effectiveness of Al-driven nutritional tools cannot be fully established.

Another persistent challenge is the lack of long-term clinical validation. Most Al-based systems have been
tested in short-term studies or controlled environments, making it difficult to assess their sustained impact
and reliability in real-world healthcare settings. This gap reduces confidence in their clinical adoption and

long-term effectiveness.

In addition, much of the existing work tends to adopt siloed approaches, focusing narrowly on a single
modality, such as image recognition, natural language processing, or predictive modeling. While these studies
provide valuable insights, the absence of multimodal frameworks that integrate diverse data types (e.g.,
images, text, clinical records, and behavioral data) limits the potential for more holistic and accurate nutritional
assessment.

Together, these observations underline the need for broader, clinically validated, and multimodal approaches

that can bridge the gap between experimental models and practical, patient-centered applications.
2.6 |Research Gap and Positioning of this Study

Although prior studies clearly demonstrate the potential of artificial intelligence in dietary monitoring and
nutritional guidance, several critical gaps remain unaddressed. Existing systems often concentrate on a single
aspect—such as food recognition, chatbot interaction, or predictive analytics—rather than offering a fully
integrated framework. This fragmented approach limits their effectiveness, as real-world nutrition
management requires solutions that combine multiple data sources and analytical techniques.

Another important shortcoming is the absence of comprehensive clinical validation. While many models
perform well in controlled experiments, few have been tested in long-term, real-world healthcare settings. As
a result, their clinical reliability and practical usefulness remain uncertain. Furthermore, ethical
considerations—including transparency, user privacy, and cultural adaptability—are frequently overlooked,

despite being essential for adoption in diverse populations.

This study positions itself to address these shortcomings by conducting a systematic review of Al applications
in nutrition across various domains. It emphasizes not only the technological advancements but also the
practical challenges and limitations that hinder implementation as shown in the Table 1. By highlighting the
need for multimodal integration, advanced machine learning models, and rigorous clinical validation, this



63 Abdelaziz et al. | Int. j. Comp. Info. 10 (2026) 56-77

work aims to provide a foundation for future research that bridges the gap between experimental innovation

and real-world dietary practice.

A comparative synthesis of the reviewed studies reveals several cross-cutting patterns that extend beyond
their individual contributions. Classical ML models generally perform well on structured dietary or clinical
datasets but exhibit limited scalability and struggle with complex food representations, whereas deep learning
models consistently outperform them in image-based recognition tasks due to their ability to extract
hierarchical features from raw visual input. Across multiple studies, performance differences can be traced
back to dataset quality, cultural diversity, and annotation consistency, with models trained on culturally diverse
datasets demonstrating superior generalizability. Chatbot-based systems show promise for user engagement
but remain constrained by variability in nutrient estimation and inconsistent adherence to dietary guidelines.
Personalized nutrition frameworks benefit from integrating multiple data sources, yet their accuracy is heavily
dependent on the completeness and standardization of input data. Taken together, these findings indicate
that methodological choices—not only model architecture but also dataset composition and evaluation
design—rplay a decisive role in determining model effectiveness. This synthesis highlights the necessity for
cross-modal datasets, standardized evaluation metrics, and integrated AI-BI frameworks to support reliable

and transferable nutrition-related applications.

To improve clarity and highlight methodological patterns more effectively, the studies included in this review
have been reorganized into thematic groups rather than listed individually. These themes reflect the major
research domains identified in the literature: (1) food recognition and portion-size estimation using computer
vision and deep learning, (2) conversational agents and chatbot-based nutrition assistants, (3) personalized
nutrition and Al-driven dietary recommendation systems, and (4) predictive modeling for disease and
nutritional risk outcomes. Grouping the studies in this way allows for clearer comparison within and across
categories, emphasizing shared methodologies, dataset characteristics, and limitations. This thematic
presentation provides a more coherent synthesis of prior work and enables readers to better understand the

progression and diversity of Al and BI approaches in nutrition research.

Table 1. Comparison of distinct methodological advancements in dietary monitoring and nutritional science.
Group 1: Food Recognition and Portion-Size Estimation (Computer Vision & Deep Learning)

Application/Contributio

Study Methodology Strengths Limitations

n

D trated high
cmonstrated Mg Struggled with dataset

Abdusalomov et al. bias and difficulty in

CNN (Computer Food recognition and accuracy in image-

(2022) Vision) calorie estimation based nutrition . L
o estimating portion sizes
monitoring
Successfully e -
. .. . . Y Limited transferability
Papastratis et al. Meal recognition and diet integrated dietary

(2021)

Vasudha et al.
(2024)

Shi et al. (2024)

Shen et al. (2020)

Feng et al. (2025)

Kagar et al. (2021)

Mobile App + DQI-I

Deep CNNss

DL + 3D
Reconstruction

ML + DL

ML + DL

Chatbot (NLP + ML)

quality assessment

Food recognition and
calotie estimation

Calorie estimation in
dishes/vegetables

Food recognition and

nutrition estimation

Chinese cuisine dietary

assessment

Virtual dietitian
providing real-time
feedback

indices into an app-
based tool
Reached extremely
high recognition

accuracy

Improved estimation
beyond 2D methods

Achieved high
classification accuracy
with cultural datasets

Generated detailed
nutritional labels with
high accuracy

Reported strong user
engagement

across different cultural

food contexts

Provided limited
nutritional detail

Accuracy reduced by
varied food shapes and
sizes
Weak performance on
complex or mixed

meals

Dataset imbalance
affected reliability

Group 2: Conversational Agents and Chatbots (NLP, LLMs, Dialogue Systems)

Faced challenges in
personalization and
cultural adaptation
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Haman (2023) ChatGPT-like LLMs
Chatbots (Gemini,

K 1. (202
aya et al. (2025) Copilot, ChatGPT-4)

Al Chatbot

Bayram et al. (2025) (ChatGPT)
al

Conversational nutrition

counseling

Quantitative assessment
of diet quality

Menu planning vs.
national guidelines

Improved naturalness
and interactivity of
dialogue
Provided structured
diet quality evaluation
High short-term
accuracy and

consistency

Concerns over
reliability and lack of
explainability
Inconsistent outputs
across Al tools
Often underestimated
caloric and nutrient
needs

Group 3: Personalized Nutrition & Recommendation Systems (Hybrid ML, RL, Framework Models)

Wang et al. (2020) Hybrid ML Models

Liu et al. (2024) Al Framework

Al d Mobil
Mazzei et al. (2015) powered Bloble
App

Zahid et al. (2023) Al Mobile Application

Dias et al. (2022) Al Mobile Application

Personalized diet
planning

Personalized nutrition
based on Taiwanese
guidelines

Recipe evaluation and
adaptive dietary advice

Nutrition management
post-surgery

Personalized nutrition
and diet planning

Delivered tailored
meal
recommendations
Enhanced precision in
nutrient calculation
and dietary planning
Allowed flexible
dietary management
and adaptive
recommendations
Reported improved
outcomes in children
Automated portion
size estimation from

images

High data demands and

privacy concerns

Limited by dataset size
and diversity

Difficulty in
normalizing quantities,

especially liquids

Short study duration

limited conclusions

Small sample size and
low generalizability

Group 4: Predictive Modeling for Disease & Malnutrition Outcomes (Classical ML)

Haman (2022) RF + Deep Learning

ML (RF, SVM, LDA,

Siy Van et al. (2021) IR)

Aryuni etal. (2023) ML (DT, KNN, NB)

RF + Neural

Knights et al. (2023) Network
etworks

Obesity risk prediction

Undernutrition
prediction

Malnutrition prediction
in children

Obesity management

Combined dietary and
demographic data for
improved predictions
Random Forest
achieved strong
predictive
performance
Decision Tree
achieved strong
accuracy and Fl-score
High predictive
accuracy of health

outcomes

Imbalanced datasets
and limited validation

Dataset not nationally

representative

Limited by small

dataset size

Constrained by small
dataset size

This thematic grouping highlights clear methodological patterns across studies. Deep learning models
dominate food recognition tasks due to their hierarchical feature-learning capabilities, whereas classical
machine learning approaches remain prevalent in structured prediction problems such as malnutrition and
obesity risk assessment. Chatbot and LLM-based systems contribute primarily to user engagement and
counseling, but their accuracy and consistency remain variable. Personalized nutrition frameworks show
promise by integrating multiple data sources, yet depend heavily on dataset completeness and standardization.
Together, these patterns demonstrate that model effectiveness is shaped more by methodological fit and
dataset quality than by algorithmic complexity alone.

3 | Method

The Figure 1 were generated from the final set of 73 included studies. Publication trends reflect the year-by-
year distribution of these studies from 2010 to 2025, while application categories were assigned through
manual coding based on each study’s primary methodological focus. All visualizations therefore correspond
directly to the screened and eligible dataset.
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3.1 | Datasets in Nutrition Research

Datasets form the foundation of Al and BI research in nutrition by supplying the data necessary to train,
validate, and benchmark predictive and analytical models. The most widely used datasets differ in scope,
structure, and purpose—ranging from large-scale food image collections to structured nutritional databases.

The Food-101 dataset is one of the most extensively used open-access image datasets, containing
approximately 101,000 labeled images divided into 101 food categories [28]. It has served as a benchmark for
developing Convolutional Neural Network (CNN) architectures used in food recognition and caloric
estimation. However, its limited number of classes restricts its ability to capture global dietary diversity,
thereby limiting its use for comprehensive nutrient estimation.

The Protein NAP (Nutrition and Physical Activity Plans) dataset provides a structured resource developed
by nutrition professionals under WHO and EFSA standards. It includes 84,000 daily meal plans across 3,000
virtual user profiles, covering a wide range of health and demographic conditions [29]. This dataset is
especially valuable for research in personalized nutrition and adaptive meal recommendation systems, as it
combines diet and physical activity data in a unified framework.

The Chinese Food Composition Database contributes nutritional composition data for over 1,100 food items,
supporting studies focused on Asian dietary behavior [30]. Its associated recipe dataset contains standardized
measures of raw ingredients, condiments, and cooked weights, collected under controlled conditions by
certified nutritionists, ensuring high data reliability and cultural diversity.

The Yelp dataset, by contrast, is an unstructured, real-world dataset containing restaurant profiles, user
reviews, menus, and over 280,000 food-related images [31]. Although it introduces labeling inconsistencies,
it provides a unique opportunity to train and test food recognition models in non-laboratory, real-world

conditions, improving generalization performance.

Collectively, these datasets underpin the majority of contemporary Al research in nutrition. While image-
based datasets such as Food-101 and Yelp drive advancements in visual food recognition, structured datasets
like Protein NAP and Chinese Food Composition support nutrient modeling and personalized dietary
analytics. Integrating these complementary datasets into multimodal Al and BI frameworks improves model
robustness, accuracy, and adaptability, enabling more holistic and culturally inclusive nutrition systems [32,
33].

A structured literature search was conducted across PubMed, Scopus, Web of Science, Google Scholar, and
ScienceDirect, covering the period 2010-2025. The search used combinations of the following keywords: “Al
and nutrition”, “machine learning dietary assessment”, “deep learning food recognition”, “business
intelligence nutrition”, and “LLM nutrition counseling”. After removing duplicates, studies were screened
through titles, abstracts, and full texts using predefined inclusion criteria requiring the application of Al, ML,
DL, BI, or LLM techniques in nutrition-related tasks. Studies lacking methodological relevance or full-text
availability were excluded. A total of 73 studies met the criteria and were included in the final review.

Although datasets form the foundation of Al-driven nutrition systems, many reviewed studies rely on data
that exhibit demographic or cultural bias, inconsistent annotation practices, and class imbalance. Such
limitations can inflate reported performance, reduce generalizability, and obscure real-world applicability.
Addressing these issues requires standardized annotation protocols, balanced and representative data
collection, and transparent reporting of dataset characteristics to support reliable model evaluation and
comparison.

3.2 | Al and BI Techniques in Nutrition

The comprehensive analysis of recent literature demonstrates that the integration of Business Intelligence
(BI) and Artificial Intelligence (Al) within nutritional science has fundamentally transformed the way dietary
data are collected, analyzed, and applied. The findings highlight eight interrelated areas: Al and BI techniques
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in nutrition, deep learning in nutrition, ChatGPT and generative Al applications, dietary assessment,
personalized nutrition and diet planning, obesity management, disease prediction and management, and food

recognition and analysis.

Throughout this review, BI systems are defined as the data integration and visualization layer that enables
monitoring, reporting, and decision-support workflows, whereas Al models represent the analytical layer
responsible for prediction, classification, and automated reasoning. Maintaining this distinction ensures a
consistent interpretation of how Bl operationalizes insights generated by Al and how both components

function within integrated nutrition informatics systems.

The integration of Internet of Things (IoT) technologies plays an increasingly important role in advancing
Al- and Bl-driven nutrition systems. loT-enabled devices such as wearable activity trackers, smart scales,
continuous glucose monitors, and intelligent kitchen tools generate real-time physiological, behavioral, and
dietary data that enhance the granularity and accuracy of nutritional assessments. When combined with BI
platforms, these sensor streams support continuous monitoring, automated pattern detection, and
personalized dietary interventions thro ugh interactive dashboards and decision-support tools. Furthermore,
Al models benefit from the high-frequency, multimodal data produced by IoT devices, enabling more robust
predictions of dietary behaviors and health outcomes. Despite these advantages, IoT applications remain
underrepresented in current literature, highlighting the need for more integrated frameworks that leverage
IoT as a primary data source for Al- and Bl-based nutrition analytics.

3.2.1 | Evaluating Machine Learning Technologies for Food Computing

The adoption of Al and BI techniques in nutrition has enabled the conversion of large-scale, heterogeneous
dietary data into actionable insights. Al algorithms—particularly machine learning (ML) and predictive
modeling—allow for the detection of complex patterns across nutritional intake, lifestyle habits, and health
outcomes [28].

BI platforms complement these techniques by providing data visualization dashboards, multidimensional
analytics, and decision-support systems that help clinicians and policymakers interpret results efficiently.
Through data warchousing and mining, BI aggregates nutritional data from clinical records, food databases,
and wearable devices, offering a unified analytical environment.

Recent studies show that integrating Al into BI workflows enhances dietary monitoring accuracy, supports
predictive risk modeling for diseases such as diabetes and obesity, and facilitates real-time, data-driven
decision-making in nutritional therapy [34]. Consequently, BI and Al together form a foundational layer for
intelligent nutrition ecosystems that are both adaptive and evidence based.

3.2.2 | Deep Learning in Nutrition

The post-2016 period has seen an acceleration in the use of deep learning (DL) for food computing and
nutritional analysis. Convolutional Neural Networks (CNNs) have become the backbone of automated food

recognition and calorie estimation, outperforming eatlier machine learning methods in accuracy and scalability

29, 35].

DL models can extract hierarchical visual features directly from food images, eliminating the need for manual
feature engineering. Architectures such as ResNet, Inception-V3, and EfficientNet have achieved accuracy
rates exceeding 90% in major datasets like Food-101 and UEC-Food256. These models are further enhanced
by transfer learning, allowing pretrained networks (e.g., on ImageNet) to be fine-tuned for food classification
tasks with smaller nutritional datasets [30].

In addition to image recognition, deep learning techniques have expanded to multi-modal applications,
combining visual, textual, and numerical data. For instance, ingredient detection, recipe generation, and
nutrient prediction have benefited from attention-based neural networks and transformer architectures, which

enable context-aware interpretation of food items and their relationships [36]. Overall, DL has revolutionized
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nutrition research by enabling automatic food identification, calorie estimation, and nutrient analysis at
unprecedented scale and speed.

3.2.3 | ChatGPT and Generative Al in Nutrition

The emergence of large language models (LLMs) such as ChatGPT has introduced a new dimension to
nutrition informatics. ChatGPT’s natural language understanding capabilities allow it to process dietary
records, answer user queries, and provide personalized nutrition counseling in conversational form [31].These
generative models can synthesize information from extensive nutrition databases and clinical guidelines,
delivering tailored recommendations aligned with users’ age, medical conditions, and lifestyle. Furthermore,
ChatGPT can support automated nutrition education, meal plan generation, and interactive health coaching,
reducing the burden on healthcare professionals.

Recent research has also shown that LLMs can serve as explainable Al (XAI) tools—translating complex
predictive outcomes from ML or DL systems into user-friendly explanations. By integrating ChatGPT into
BI dashboards, users can interact with their dietary data using natural language queries, turning static analytics
into an interactive, human-centric decision support system [32]. While ethical considerations such as bias,
accuracy, and data privacy remain, ChatGPT and similar LLMs represent a transformative step toward

intelligent, accessible, and conversational nutrition technologies.
4 | Results and Discussion

The analysis of recent studies confirms that Artificial Intelligence (Al) and Business Intelligence (BI) have
reshaped the nutritional sciences into a data-driven, evidence-based domain. Findings reveal 10 major focus
areas: applications of Al in nutrition; datasets; Al and BI techniques; deep learning; ChatGPT and generative
Al dietary assessment; personalized nutrition and diet planning; obesity management; disease prediction and

management; and food recognition and analysis.

To provide a clearer conceptual structure, this review introduces a taxonomy that aligns major Al techniques
with their corresponding nutrition tasks Figure 3. Classical machine learning methods are primarily applied
to structured prediction tasks such as nutrient estimation, malnutrition risk assessment, and obesity
forecasting. Deep learning models dominate image-based applications including food recognition, portion
estimation, and calorie analysis. Large language models support conversational nutrition guidance and
automated dietary counseling. Business intelligence tools enable data integration, visualization, and decision-
support workflows that operationalize Al outputs . This taxonomy offers a unified framework that clarifies
the methodological landscape and the functional roles of Al technologies within nutrition research.

Al Techniques and Nutrition Tasks

Classical ML Business Hybrid Al

Deep Learning

(SVM, RF, NB, LR) (CNNs, RNNs) Intelligence (BI) Systems

o Nutrient Prediction » Food Recognition » Dietary Counseling » Data Integ ® Per lized Nutrition
* Risk Assessment « Portion Estimation * Menu Planning » Dashboard Analysis * Multimodal Analysis
* Obesity Forecasting » Calorie Estimati * Per lized Advice * Trend Monitoring © Image + Text Processing

Figure 3. Taxonomy of Al Techniques and Nutrition Tasks.

A comparative examination of the reviewed studies indicates clear methodological patterns that move beyond

descriptive reporting. Classical machine learning models perform reliably on structured nutritional datasets
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but show limited adaptability in heterogeneous or culturally diverse settings. Deep learning approaches
achieve higher accuracy in image-based tasks, yet their effectiveness remains closely tied to the quality and
diversity of training data. Chatbot- and LLM-based systems provide new forms of personalized dietary
interaction, though their outputs remain inconsistent across usetr groups. These observations highlight that
dataset representativeness, evaluation design, and methodological alighment exert more influence on
performance than the choice of algorithm alone, underscoring the need for more rigorous, comparative, and
integrative research frameworks.

Despite the high accuracy values reported in several studies—particularly those involving food recognition,
portion estimation, and calorie analysis—these results require careful contextual interpretation. In many
instances, such performance levels are achieved using datasets that are limited in size, geographically or
culturally homogeneous, or collected under controlled experimental conditions that do not reflect real-world
variability. Consequently, models may demonstrate excellent internal validation performance while exhibiting
substantially lower generalizability when applied to heterogeneous food environments or mixed dishes with
complex visual characteristics. Studies employing broader, more diverse datasets typically report more
moderate accuracy levels, suggesting that dataset composition plays a critical role in shaping algorithmic
performance. Therefore, accuracy metrics should not be interpreted in isolation; rather, they should be
evaluated alongside the characteristics, representativeness, and ecological validity of the datasets used.
Contextualizing these results is essential to avoid overstating model capabilities and to support the
development of more robust and transferable Al systems in nutrition research.

4.1| Global Distribution and Metadata Analysis of AI-Driven Nutrition Studies

The distribution of the papers included in this review by nation income categorization is shown in Figure 4,
which illustrates the global heterogeneity in research output concerning applications of business intelligence
(BI) and artificial intelligence (Al) in nutrition. According to the data, 49% of the studies came from high-
income nations, 34% from upper-middle-income nations, and 15% from lower-middle-income nations; 2%
of the research did not specify which country they came from.

This distribution indicates that Al-related nutritional research is still heavily concentrated in technologically
advanced regions, where access to computational resources, research funding, and large-scale datasets is more
readily available. Conversely, the relatively low contribution from lower-middle-income regions highlights
ongoing disparities in data access and research capacity, underscoring the need for broader international
collaboration and equitable data-sharing initiatives. Regarding country-level representation, the largest share
of studies was conducted in the United States, with five studies identified [19, 25, 37-39]. Australia contributed
two studies [40, 41]. while China accounted for seven studies [15-16, 18, 42-44, 50]. reflecting China’s growing
engagement in Al-powered food computing research. Greece contributed three studies [10, 46, 47]. and
Switzerland [48]. Portugal [49]. Iraq and Switzerland [51]. Italy [13]. Canada [52]. Czech Republic [20].
Ethiopia [53]. Pakistan [24]. and the Philippines [20]. each contributed one study.

Additionally, Korea presented four studies [11, 45, 54, 56]. Taiwan contributed four [12, 55, 57, 2]. India
provided four [17, 30, 58, 59]. Indonesia two [27, 60]. North Macedonia one [61]. and Turkey four [21-22,
62-63].

Overall, the dominance of high- and upper-middle-income nations in Al-driven nutrition studies underscores
a geographical imbalance that parallels global digital inequality. These findings point to an urgent need for
capacity building in low-resource settings, open-access dataset development, and international collaboration
frameworks to support inclusive, cross-regional Al nutrition research
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B high- income country
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® lower-middle-income

not reported

Figure 4. Studies' distribution included in the review by country income classification.

4.2 | Applications of Al in nutrition

Al technologies are being applied across multiple nutritional domains, as illustrated in Figure 5, which
summarizes their primary use cases. The largest portion (36%) corresponds to dietary assessment and food-
image recognition, reflecting the dominance of computer vision techniques, such as Convolutional Neural
Networks (CNNs), for food identification and caloric estimation [28, 35]. Personalized nutrition and diet
planning represent about 17%, emphasizing the growing importance of data-driven, individualized meal
recommendations based on genetic, lifestyle, and biometric information [34]. Food composition analysis
(19%) focuses on evaluating macro- and micronutrients through predictive modeling and structured
nutritional databases [30].

Smaller but rapidly growing segments include Al chatbots for lifestyle intervention (13%) [31], disease
prediction and management (13%) [37], and obesity management (2%) [29].

These statistics highlight how Al tools are evolving from simple image-classification tasks toward holistic
nutritional intelligence systems capable of integrating behavioral, clinical, and environmental data for
comprehensive dietary decision-making.

A clearer separation between Al-driven analytics and BI platforms is essential to understanding their
respective roles in nutrition informatics. Al methods—including machine learning, deep learning, and large
language models—focus primarily on predictive modeling, pattern extraction, automated nutrient estimation,
and personalized recommendation generation [64]. These techniques learn from data and produce new
insights that would be difficult to obtain through manual analysis. In contrast, BI platforms operate as the
structural and organizational layer that aggregates data from multiple sources, performs multidimensional
analysis, and presents results through dashboards, visualizations, and decision-support interfaces. While Al
produces intelligent outputs such as predictions or classifications, BI provides the environment in which these
outputs are interpreted, monitored, and integrated into clinical or public-health decision-making workflows.
Together, they form a complementary ecosystem, but distinguishing their roles clarifies why Al is responsible
for generating analytical intelligence, whereas BI is responsible for delivering that intelligence to end users in
an actionable and interpretable form.
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APPLICATIONS OF AI IN NUTRITION

= Personalized nutrition and diet Planning

= Food composition "
sDietary assessment and food images recognition

technigques
s Disease prediction and management

s AT chatbots for lifestyle intervention

= Obesity Management

Figure 5. The nutrition areas in which the included articles used AL

4.2.1| Dietary Assessment

One of the principal applications of BI in nutrition involves the automation of dietary assessment processes,
which traditionally relied on subjective and labor-intensive methods such as food diaries or recall
questionnaires. Bl tools, supported by Al algorithms, provide a more accurate and efficient approach by
utilizing predictive analytics, data visualization dashboards, and machine learning—based classification systems
(29].

Modern dietary assessment platforms employ computer vision algorithms capable of identifying food items
from images, quantifying portion sizes, and estimating macronutrient and caloric values automatically. These
systems minimize human error and improve the reliability of nutritional data collection. Furthermore, BI
environments enable researchers and practitioners to interpret this data visually through dashboards that
present aggregated patterns, allowing for real-time dietary monitoring and policy-level decision-making. Such
analytical capabilities contribute directly to evidence-based nutrition strategies and more targeted
interventions for individuals and communities [30)].

4.2.2 | Personalized Nutrition and Diet Planning

The study’s findings also emphasize BI’s essential role in enabling personalized nutrition and individualized
meal planning. Through the integration of demographic, clinical, behavioral, and genetic data, BI-driven
frameworks can generate tailored dietary recommendations aligned with users’ unique physiological and
lifestyle needs.

Advanced BI platforms use predictive and prescriptive analytics to anticipate potential nutrient deficiencies
and model how specific dietary changes may affect metabolic outcomes [30]. Meanwhile, Al-enhanced
recommendation engines dynamically adapt meal plans based on continuous feedback, allowing for
adjustments in real time. BI systems also support scenario simulation and what-if analysis, helping nutrition
experts forecast the long-term effects of vatious dietary scenarios. This personalized, data-driven approach
marks a significant evolution from generic nutritional guidelines toward precision nutrition, where dietary
planning becomes both adaptive and evidence-based [34].

4.2.3 | Obesity Management

A third area of BI application is in obesity management, where Bl platforms integrate data from diverse
sources such as wearable sensors, fitness trackers, mobile health applications, and clinical databases. By
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combining these datasets, Bl systems enable predictive modeling that identifies high-risk individuals and
supports the design of targeted weight management programs [28].

Machine learning algorithms within BI frameworks analyze trends in caloric intake, physical activity, and
physiological changes to forecast weight trajectories and evaluate intervention outcomes. Data visualization
tools further allow healthcare providers to monitor patient adherence, behavioral progress, and motivational
patterns. The integration of behavioral analytics and sentiment analysis adds another dimension, revealing the
psychological and social determinants of obesity. These insights allow policymakers and clinicians to design
more comprehensive, preventive obesity management strategies that address both physiological and
behavioral dimensions [29].

4.2.4 | Disease Prediction and Management

BI, when coupled with Al, has proven highly effective in predicting and managing diet-related diseases, such
as type 2 diabetes, cardiovascular disorders, and hypertension. By merging dietary records with medical and
biochemical datasets, BI systems generate insights into eatly risk indicators and patterns associated with
disease development [35].

Machine learning techniques are used to create predictive models that identify at-risk individuals based on
their dietary and lifestyle profiles. These predictive analytics empower clinicians to take preventive action
through timely dietary interventions. Moreover, BI dashboards equipped with interactive visualization allow
continuous patient monitoring, supporting data-driven decisions in clinical nutrition. In this context, BI serves
as an intelligent decision-support system, offering dynamic tracking of nutritional therapy outcomes and
enabling personalized adjustments to optimize patient health [30].

4.2.5| Food Recognition and Nutritional Analysis

Food recognition and nutritional analysis have emerged as some of the most dynamic areas in Al-assisted
nutrition. Using deep learning and computer vision, Bl-integrated systems can automatically detect, classity,
and analyze food items captured in images or videos [29]. Datasets such as Food-101, UEC-Food256, and
Recipel M+ provide the foundation for training these models, enabling recognition across thousands of food
categories with high accuracy.

Once identified, BI tools transform the extracted visual data into quantitative nutritional insights, including
calorie counts, macronutrient breakdowns, and eating frequency patterns. When integrated with Internet of
Things (IoT) devices—such as smart utensils, kitchen cameras, or wearable trackers—these systems enable
continuous, automated dietary logging without manual input. BI dashboards visualize the collected data,
offering users and nutritionists a comprehensive overview of dietary compliance, energy balance, and
consumption trends. This fusion of Al and BI thus facilitates a new era of real-time, automated nutrition
analytics [34, 30].

The findings collectively demonstrate that Bl acts as a cornerstone in the development of intelligent, data-
centric nutrition systems. Its integration with Al allows for more accurate dietary assessment, personalized
recommendations, and improved disease prevention strategies. BI’s analytical and visualization capabilities
transform raw nutritional data into actionable insights, supporting precision healthcare and evidence-based
nutrition interventions.

Overall, BI’s synergy with Al technologies signifies a pivotal advancement in digital health and nutrition
research, marking the transition from traditional dietary evaluation methods to proactive, predictive, and
automated nutritional intelligence systems. This evolution represents a crucial step toward achieving data-
driven public health initiatives and promoting healthier, more sustainable dietary behaviors on both individual
and societal levels [30].
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5 | Limitations and Recommendations

Although Artificial Intelligence (Al) and Business Intelligence (BI) have shown great potential in transforming
nutritional research, their development and application still face a number of data-related, methodological,
and ethical limitations. The datasets most frequently used in this domain, such as Food-101, Yelp, and Protein
NAP, remain limited in diversity and often contain labeling inconsistencies. Most collections represent
Western dietary habits, leading to a lack of cultural generalizability. In addition, very few datasets provide
longitudinal records that could reveal temporal dietary patterns and their influence on long-term health
outcomes. To achieve robust and equitable performance, future initiatives should promote the construction
of cross-cultural, multimodal datasets that integrate food images, nutritional composition, and user-specific
variables reflecting lifestyle, culture, and physiology [28, 29, 33, 34].

From a methodological standpoint, deep-learning and transfer-learning models have achieved impressive
classification accuracy for food recognition and calorie estimation; however, they still act largely as opaque
systems. Their lack of interpretability reduces their acceptance in clinical or public-health contexts, where
decisions must be transparent and traceable. Furthermore, such models require substantial computational
resources, limiting deployment in mobile or low-resource environments. To address these gaps, researchers
are encouraged to design explainable and lightweight models that balance computational efficiency with
interpretability and accuracy, ensuring that clinicians and end users can understand and trust Al-generated
insights [35].

Another limitation arises from the poor integration between Al algorithms and BI environments. Many
current systems operate in isolation, producing results that are not ecasily scalable or interoperable.
Establishing standardized data formats, ontology-based nutrition vocabularies, and interoperable
architectures would facilitate seamless communication between analytics layers and data sources. Embedding
Al prediction engines directly within BI dashboards could allow continuous data flow and enable dynamic,
real-time decision-support capabilities [30, 32].

Ethical and privacy considerations further complicate the adoption of Al-based nutrition systems. Because
these applications often process sensitive health and biometric data, issues such as consent, bias, and
transparency become crucial. Unclear data-governance structures and potential model bias can undermine
reliability and user confidence. Adopting privacy-preserving computation techniques—such as federated
learning and differential privacy—while ensuring compliance with national and international health data
regulations can help maintain both data protection and analytical quality [31].

To move the field forward, future research should concentrate on several practical strategies. Standardizing
nutritional data taxonomies and metadata structures will enhance comparability and reproducibility. Open-
access data-sharing initiatives can accelerate scientific progress and benchmarking. Implementing explainable
and auditable Al frameworks will strengthen clinical trust. Integrating behavioral, cultural, and contextual
variables can lead to adaptive, person-centered recommendations, while coupling BI dashboards with natural-
language interfaces (e.g., ChatGPT) will make analytical tools more accessible to non-technical users. Finally,
advancing Al and BI in nutrition requires close collaboration among data scientists, dietitians, healthcare
professionals, and policymakers to ensure that innovation remains ethical, transparent, and inclusive [33].

In conclusion, despite notable progress, the field still faces barriers related to data diversity, model
transparency, and technological interoperability. Overcoming these challenges through ethical design, data
standardization, and interdisciplinary cooperation will pave the way for intelligent, explainable, and equitable
Al-driven nutrition ecosystems capable of improving individual and public-health outcomes worldwide.

Although this review intentionally adopts a broad scope to capture the diverse landscape of Al and BI
applications in nutrition, this breadth may limit the depth of technical treatment in specific areas. To address
this, key methodological sections have been expanded to provide deeper analysis where required, ensuring a
more balanced integration of scope and technical detail.
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A focused examination of ethical considerations in Al-driven nutrition systems highlights three key
dimensions: privacy, bias, and explainability. Privacy concerns arise in systems that process user images or
detailed dietary logs. For example, the food-image recognition models employed in Sun et al. (2023) [15],
rely on continuous photo uploads, which introduces risks related to image storage, user identification, and
cross-border data transfer. Bias is another critical issue, as several studies use culturally narrow datasets.
Vasudha et al. (2024) [17] , reported near-perfect accuracy in food recognition, yet their dataset consisted
largely of region-specific dishes, limiting generalizability to other populations. A similar pattern appears in
Kaya et al. (2025) [21] , where chatbot-based diet-quality assessments showed inconsistent results due to
vatiations in user profiles and dietary habits not represented in the training data. Explainability remains a
significant barrier, particularly in LLM-based systems. As demonstrated by Haman (2023) [20] , Al-generated
dietary recommendations can appear coherent while lacking transparent reasoning or traceable nutritional
sources, making clinical validation difficult. Addressing these challenges requires privacy-preserving data
pipelines, culturally diverse datasets, and the integration of explainable-Al mechanisms to ensure safe and
equitable deployment of Al technologies in nutrition.

Although this review offers a structured synthesis of Al and BI applications in nutrition, several limitations
must be acknowledged. The search strategy, while comprehensive, was restricted to major academic databases
and English-language publications, which may have resulted in the exclusion of relevant grey literature or
region-specific contributions. Differences in methodological rigor, dataset size, and evaluation protocols
across the included studies also introduce a degree of heterogeneity that limits direct comparability.
Furthermore, the rapid pace of development in Al deep learning, and large language models means that new
advances may have emerged after the completion of the search process. These limitations should be

considered when interpreting the findings and assessing the overall scope of this review.

Explainable Al is essential for healthcare-focused nutrition systems, as clinicians require transparent and
interpretable model outputs to validate recommendations and ensure patient safety. Most current models
operate as black boxes, limiting clinical trust. Integrating XAl techniques—such as feature attribution or
attention visualization—is therefore necessary to support reliable and accountable clinical decision-making.

6 | Conclusions and Future Work

This review demonstrates that the convergence of Artificial Intelligence (Al) and Business Intelligence (BI)
has begun to redefine the field of nutritional science by introducing data-driven, adaptive, and predictive
methodologies. It presents a comprehensive overview of current Al ML, and DL technologies in nutrition.
The synthesis of recent research reveals that Al techniques—particularly machine learning, deep learning, and
generative models—are enabling more precise dietary assessment, personalized meal planning, and disease
prediction. When integrated within BI frameworks, these algorithms transform large, unstructured datasets
into actionable insights through interactive dashboards, real-time visualization, and evidence-based nutritional
analytics. This integration represents a paradigm shift from traditional descriptive dietary studies to intelligent,

decision-support systems capable of continuous learning and adaptation.

Despite significant progress, several critical limitations continue to hinder large-scale implementation. The
scarcity of diverse, longitudinal, and culturally inclusive datasets restricts model generalizability and fairness.
Many Al systems remain opaque and computationally intensive, limiting their interpretability and practical
use in clinical settings. Moreover, integration between Al-driven predictive models and BI environments
remains fragmented, while ethical and privacy concerns persist due to the sensitive nature of nutritional and
biometric data. Addressing these challenges will require standardization of nutritional ontologies, open-access

data initiatives, and interdisciplinary frameworks that link data science, healthcare, and policy development.

Although several studies demonstrate promising short-term performance, the clinical applicability of Al-
based nutrition systems remains limited by the lack of long-term validation. Most models have been evaluated

in controlled or small-scale settings, with few undergoing extended real-world clinical trials. As a result, claims
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regarding clinical integration should be interpreted cautiously until supported by multi-year evidence across

diverse patient populations.

Future research should focus on building multimodal and cross-cultural datasets that integrate food images,
consumption logs, metabolic biomarkers, and behavioral factors to enhance contextual accuracy.
Advancements in explainable Al (XAI) will be critical for improving model transparency and trust among
clinicians and end-users. Additionally, the integration of Large Language Models (LLMs) such as ChatGPT
within BI systems presents promising opportunities for developing natural-language-driven nutritional
analytics, enabling more accessible human—machine interaction. The application of federated learning and
privacy-preserving Al could further support global collaboration without compromising data security.
Ultimately, achieving scalable, ethical, and explainable AI-BI systems will pave the way for the next generation
of intelligent nutrition ecosystems, empowering individuals and institutions to make informed dietary and
health-related decisions based on reliable, interpretable, and inclusive data-driven intelligence.
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