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1 |Introduction  

Tomato (Solanum lycopersicum) is one of the most economically and nutritionally valuable horticultural crops 

worldwide. In Egypt, tomato farming contributes significantly to the agricultural industry, ranking fourth 

globally in production. In the 2022–2023 cycle, Egypt produced 7.1 million tons, representing an 11.7% 

increase from the previous year [1]. Despite this growth, tomato crops are highly susceptible to foliar diseases, 

including early blight, late blight, and leaf mold. Early blight, caused by Alternaria solani, can lead to severe 

defoliation, fruit sunburn, and substantial yield losses [2,3]. Effective monitoring and early detection are 

essential to mitigate these losses. Traditional visual inspection methods are time-consuming, subjective, and 

challenging to scale in industrial or resource-limited agricultural settings [4,5]. In recent years, deep learning 

techniques, particularly convolutional neural networks (CNNs), have been widely adopted for automated 

plant disease detection using leaf images [6–8].  
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Agriculture is an essential part of ensuring global food security, but crop productivity is frequently threatened by 

plant diseases. Leaf diseases on tomato crops, in particular, can cause substantial losses if not identified early. 

Traditional disease identification methods rely on visual inspection, which is labor-intensive and prone to error. In 

recent years, deep learning techniques, especially convolutional neural networks (CNNs), have gained attention for 

automated plant disease diagnosis using leaf images. This paper presents a comprehensive review of existing deep 

learning approaches for tomato leaf disease detection, focusing on CNN architectures, attention mechanisms such 

as squeeze-and-excitation (SE) blocks, data augmentation strategies, and training optimizations. The reviewed studies 

are categorized according to network architecture, dataset, plant species, and reported performance metrics. Publicly 

available datasets, such as PlantVillage, are discussed, along with limitations in real-world applicability due to domain 

shift. Challenges faced by existing methods, including dataset bias, class imbalance, and overfitting, are highlighted. 

Finally, research gaps are identified, and directions are suggested to enhance the robustness, generalization, and 

practical applicability of deep learning-based plant disease diagnosis systems for sustainable agriculture.  
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These methods can extract meaningful features automatically, without manual feature engineering. However, 

deploying such models in real-field conditions remains challenging due to hardware limitations and trade-offs 

between model size and predictive accuracy [9–11]. While several surveys have reviewed deep learning 

approaches for plant disease detection, most either focus on general agricultural AI, individual model families, 

or laboratory datasets. Few studies systematically analyze recent advancements specifically for tomato leaf 

diseases, compare model architectures, attention mechanisms, data augmentation strategies, and real-world 

deployment challenges, or identify critical research gaps. Therefore, a focused and up-to-date survey is 

necessary to consolidate knowledge, highlight limitations in existing methods, and guide future research 

toward more robust, generalizable, and field-applicable plant disease detection systems. 

This paper provides a review of deep learning-based approaches for tomato leaf disease detection, covering 

CNN architectures, attention mechanisms (e.g., squeeze-and-excitation blocks), data augmentation strategies, 

and training optimizations. The reviewed studies are analyzed with respect to network design, datasets, target 

plant species, and reported performance metrics. 

The paper is organized as follows. Section 2 presents the review methodology, including the literature search 

strategy, selection criteria, and PRISMA-based screening process. Section 3 discusses the importance of early 

detection in plant disease management. Section 4 provides a comparative review of existing deep learning–

based approaches for plant leaf disease detection. Section 5 highlights the key challenges and limitations 

associated with developing efficient and deployable detection systems. Finally, Section 6 concludes the review 

and outlines potential directions for future research. 

To help readers quickly grasp the overall workflow and methodological landscape 

of deep learning–based plant leaf disease detection systems, Figure 1 presents a high-level graphical overview 

of the complete pipeline, from data acquisition and preparation to classification and evaluation. 

 
Figure 1. High-level graphical summary of deep learning approaches for plant leaf disease detection. 

 

2 | Review Methodology 

This review follows a structured and systematic methodology to ensure transparency, reproducibility, and 

comprehensive coverage of recent deep learning–based approaches for plant leaf disease detection. The 

review process adheres to the general principles of the PRISMA (Preferred Reporting Items for Systematic 

Reviews and Meta-Analyses) framework. 
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2.1 | Search Strategy 

A comprehensive literature search was conducted to identify relevant studies published between 2020 and 

2025, reflecting recent advances in deep learning architectures and deployment-oriented plant disease 

detection systems. The search focused on peer-reviewed journal articles and high-quality conference 

proceedings. 

The primary sources of literature included widely used scientific databases and publishers, such as IEEE 

Xplore, ScienceDirect (Elsevier), SpringerLink, MDPI, and related indexed venues. Search queries were 

formulated using combinations of keywords including: 

plant disease detection, leaf disease classification, deep learning, convolutional neural networks, lightweight 

CNN, transfer learning, hybrid models, edge deployment, and PlantVillage dataset. 

In addition to benchmark datasets such as PlantVillage, studies employing custom and field-collected datasets 

were explicitly considered to capture real-world variability and deployment-oriented research trends. 

2.2 | Search Strategy 
To ensure relevance and consistency, explicit inclusion and exclusion criteria were applied during the 

screening process. Inclusion criteria: 

 Studies published between 2020 and 2025. 

 Research articles proposing or evaluating deep learning–based models for plant leaf disease detection. 

 Studies using image-based datasets, including PlantVillage or custom/field datasets. 

 Articles reporting quantitative performance metrics (e.g., accuracy, precision, recall, F1-score). 

 Works describing model architecture, computational complexity, or deployment considerations. 

Exclusion criteria: 

 Studies published before 2020. 

 Review papers, surveys, or opinion articles without experimental validation. 

 Works not based on deep learning or not using image-based plant disease data. 

 Papers with insufficient methodological detail or unavailable full text. 

 Duplicate studies or extended versions of the same work with overlapping results. 

2.3 | Study Selection Process (PRISMA Flow) 
The study selection process followed a structured multi-stage screening procedure inspired by the PRISMA 

framework, as illustrated in Figure 2 (The study selection process). Initially, 112 records were identified 

through comprehensive searches across multiple digital libraries, including IEEE Xplore, SpringerLink, 

ScienceDirect, Google Scholar, in addition to reference list screening. 

After removing 18 duplicate records, 72 unique studies remained and were screened based on titles and 

abstracts. During this stage, 28 records were excluded due to irrelevance to plant leaf disease detection, 

absence of deep learning methodologies, or insufficient experimental validation. 

Subsequently, 66 full-text articles were assessed for eligibility. Of these, 16 studies were judged ineligible 

because they were published before 2020, lacked experimental evaluation, or did not focus on image-based 

leaf disease detection. 
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Finally, 56 primary studies were selected for qualitative synthesis and comparative analysis. These studies 

constitute the analytical foundation of the review and are systematically categorized in Tables 1–3, reflecting 

diverse architectural designs, dataset characteristics, and deployment considerations. 

 

 
Figure 2. The study selection process. 

 

2.4 | Data Extraction and Categorization 
For each selected study, relevant information was systematically extracted, including: 

 Model architecture and design strategy, 

 Target plant species, 

 Dataset type and size (PlantVillage or custom datasets), 

 Reported performance metrics, 

 Model size and computational complexity, 

 Suitability for edge or resource-constrained deployment. 

To enable structured comparison and deeper insight, the selected studies were categorized into three groups, 

each comprising a representative set of works: 

1. Pre-trained and transfer learning–based models (Table 1), 

2. Enhanced and customized CNN architectures (Table 2), 

3. Hybrid and cascaded deep learning models (Table 3). 
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Each group includes approximately ten representative studies, selected to balance architectural diversity, 

dataset variation, and reported performance. This grouping strategy facilitates meaningful qualitative 

comparison while avoiding bias toward a single architectural family or dataset. 

2.5 | PRISMA Summary 
In summary, the review methodology ensures that: 

 The literature selection process is systematic and reproducible, 

 Recent and experimentally validated studies are emphasized, 

 Comparisons are made on a qualitative and architectural basis, rather than relying solely on reported 

accuracy values, 

 Practical considerations such as deployability and computational efficiency are explicitly addressed. 

3 | The importance of Early Detection in Agricultural Disease 

Management   

Early detection of crop diseases is crucial for reducing yield losses, maintaining product quality, and sustaining 

agricultural productivity. Foliar diseases, such as early blight in tomatoes and potatoes, typically begin with 

subtle signs, including small lesions, browning, or mild leaf deformation. If not detected early, these infections 

can spread rapidly, causing significant economic losses [1, 2]. 

Early identification of diseases, including viral infections like Tomato Yellow Leaf Curl Virus (TYLCV), 

enables timely interventions such as targeted pesticide application or removal of infected plants, preventing 

large-scale outbreaks and minimizing environmental impact [5]. Conventional visual inspection methods are 

labor-intensive, time-consuming, and prone to human error, especially under variable field conditions. In 

contrast, computer-based and deep learning approaches have shown significant potential for early detection 

using image analysis [9, 10]. These techniques can detect subtle changes in leaf color and texture before they 

become visible to the naked eye, enabling pre-symptomatic identification. Integration with mobile or drone 

platforms further enhances field monitoring and decision-making. 

Other technologies, such as template matching for pathogen detection and multispectral imaging for crop 

disease monitoring, illustrate the trend toward scalable and field-deployable solutions [3, 4]. By reducing 

reliance on laboratory testing and facilitating timely interventions, early detection supports sustainable 

agriculture, precision farming, and smart farming initiatives, ultimately contributing to improved food security 

for both large-scale and smallholder farms. 

4 | Comparative Study   

This section reviews recent AI-based approaches for plant disease detection, with a focus on deep learning 

techniques, datasets, and imaging methods. Advances in data availability, image processing, and AI algorithms 

have facilitated faster and more accurate detection of plant diseases. Farmers and researchers are increasingly 

applying AI to monitor crops, support decision-making, and improve agricultural productivity [12].  

Smart farming, integrating AI and IoT, enables precise monitoring and management across different crop 

growth stages. Plant disease detection primarily relies on leaf images captured by cameras, drones, or satellites. 

Several datasets are available for research, among which the PlantVillage Dataset is most commonly used [13]. 

It contains 54,306 images of plant leaves under controlled conditions, covering 38 classes across 14 plant 

species, including Tomato, Cherry, Squash, Apple, Orange, Potato, Strawberry, Raspberry, Grape, Blueberry, 

Bell Pepper, Soybean, and Peach. These classes include 12 healthy, 17 fungal, 4 bacterial, 2 viral, 2 mold-

related, and 1 mite-related diseases. While these datasets are diverse, they are largely lab-controlled, which 

may limit applicability to field conditions and real-world deployment.  
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The following subsections discuss various AI-based methods applied to plant disease detection, highlighting 

their network architectures, data augmentation strategies, attention mechanisms, and reported performance 

metrics. 

This paper presents a critical and systematic survey of deep learning techniques for plant leaf disease detection, 

focusing on convolutional neural networks (CNNs) and related architectures. The primary research objective 

is to provide a comprehensive overview of the current state-of-the-art methods, highlighting their 

architectural designs, data requirements, performance metrics, and practical deployment considerations. 

Rather than proposing a new model, this survey aims to answer the following research question: What are the 

main challenges, limitations, and effective strategies in applying deep learning models for accurate and 

efficient detection of plant diseases under diverse real-world conditions? By addressing this question, the 

paper identifies gaps in the literature and informs future research directions for improving robustness, 

generalization, and efficiency in AI-based plant disease detection systems.  

4.1 | Deep Learning Techniques for Plant Leaf Diseases Detection 

Deep learning (DL) techniques have been extensively applied to automate plant leaf disease detection, 

providing a significant improvement over traditional manual inspection, which is labor-intensive and prone 

to human error [14]. Convolutional Neural Networks (CNNs) and their variants constitute the predominant 

DL approach for image-based classification tasks in this domain, owing to their ability to automatically extract 

hierarchical features from input images [15], [16]. Among publicly available datasets, PlantVillage remains the 

most widely utilized, comprising over 54,000 labeled images spanning 14 plant species and multiple disease 

categories, including tomato leaf diseases [13]. However, the dataset was primarily collected under controlled 

laboratory conditions, which may not fully capture the variability present in real-field environments. Factors 

such as illumination changes, background complexity, and crop variability introduce a domain shift, 

potentially leading to degraded performance when models trained on controlled datasets are deployed in real-

world agricultural settings. 

To ensure a systematic and reproducible survey, the studies reviewed herein were identified through 

structured searches in major scientific databases, including IEEE Xplore, ScienceDirect, SpringerLink, and 

Google Scholar. The search encompassed publications from 2015 to 2024, using keywords such as “tomato 

leaf disease detection,” “plant disease deep learning,” “CNN,” and “attention mechanisms.” Inclusion criteria 

were applied to select studies that: (i) focused on DL approaches for plant leaf disease detection, (ii) reported 

performance metrics on publicly available or well-documented datasets, and (iii) provided sufficient 

methodological details to enable comparative assessment. Studies lacking quantitative results, not relevant to 

plant disease detection, or restricted to non-public datasets were excluded. This protocol ensures transparency 

in study selection and supports reproducibility of the comparative survey presented in subsequent sections. 

Challenges in applying DL models to plant disease detection include dataset imbalance, variations in lighting 

conditions, hardware constraints, and the need for models that generalize effectively across diverse 

environments. To address these challenges, researchers have developed a range of models, from lightweight 

CNNs suitable for mobile or edge deployment to deeper hybrid architectures targeting higher accuracy. In 

addition to CNNs, other DL algorithms employed include recurrent neural networks (RNNs), long short-

term memory networks (LSTMs), and multilayer perceptrons (MLPs), with CNNs being the most extensively 

utilized [15], [16]. Several well-established CNN architectures have been adapted for plant disease detection, 

including AlexNet [17], Xception [18], Inception [19], VGG [20], and ResNet [21]. These models leverage 

hierarchical feature extraction to identify complex patterns associated with different disease symptoms. The 

studies selected for this review focus specifically on tomato leaf disease detection and the use of publicly 

available datasets, providing a solid foundation for comparative evaluation of architectures, data augmentation 

strategies, and reported performance metrics. Figure 3 provides hierarchical taxonomy of deep learning 

models for plant leaf disease detection, illustrating the relationships between standard CNN architectures, 

pre-trained networks, enhanced or customized models, and cascaded or hybrid frameworks. 
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Figure 3. Hierarchical taxonomy of deep learning models for plant leaf disease detection. 

 

4.2 | Pre-Trained Models for Plant Leaf Diseases Detection 

Transfer learning has become a widely adopted approach in plant disease detection, enabling researchers to 

leverage pre-trained convolutional neural network (CNN) architectures such as AlexNet, MobileNet, 

DenseNet, VGG, ResNet, and EfficientNet. These models are initially trained on large-scale benchmark 

datasets (e.g., ImageNet) and subsequently fine-tuned for domain-specific tasks, including plant leaf disease 

classification [22–31]. 

Recent studies have explored various strategies to enhance model performance. For example, DenseNet121 

was combined with synthetic image generation techniques to improve generalization and reduce overfitting 

[22]. MobileNetV2 integrated with runtime data augmentation was applied to improve robustness against 

dataset variability [24]. Other architectures such as ResNet50 [25], VGG16 [26], and InceptionV3 [27] were 

explored across different crop species, demonstrating the adaptability of pre-trained networks for diverse 

plant disease detection tasks. 

Lightweight and efficiency-oriented models, including EfficientNet variants [28,29] and SqueezeNet [30], 

have been proposed to address deployment constraints in resource-limited agricultural environments. 

To provide a structured overview, Table 1 presents a qualitative summary of ten representative pre-trained 

deep learning models for plant leaf disease detection, focusing on studies published between 2020 and 2025. 

The studies included were selected based on multiple criteria: 

1. Relevance to tomato leaf disease detection, while including other crops to illustrate the cross-species 

applicability of pre-trained CNNs. 

2. Diversity of CNN architectures, including both lightweight models suitable for edge deployment 

(MobileNet, SqueezeNet) and deeper networks with strong feature extraction capabilities (VGG16, 

ResNet50, DenseNet121, EfficientNetB5). 

3. Publication recency and impact, prioritizing studies from 2020–2025 with notable methodological 

contributions and practical relevance. 

4. Practical deployment considerations, such as model size, computational cost, and suitability for low-

resource devices. 

This curated selection provides readers with a concise yet informative overview of pre-trained CNN models, 

emphasizing both performance and practical deployment considerations. Limiting the table to ten studies 

maintains clarity while capturing the most relevant examples. 
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Accuracy values in Table 1 are extracted from the original studies and presented as reported, typically to two 

decimal places. “Ref. No.” indicates the reference number of the cited study; “Plant” specifies the host plant; 

“Dataset Size” is the number of images used for training and testing; “Accuracy (%)” represents the 

classification accuracy; “Model Size” is reported in number of parameters; “Edge Deployable” indicates 

whether the model can be deployed on resource-constrained devices; “Advantages” summarizes key 

strengths; “Disadvantages” summarizes main limitations. 

From Table 1, several general observations can be drawn: 

 Lightweight architectures such as MobileNetV2 and SqueezeNet are more suitable for real-time 

deployment on edge devices, whereas larger models like VGG16 and ResNet50 achieve high accuracy 

but are computationally intensive. 

 Model performance generally improves with dataset size and the use of appropriate data 

augmentation, but larger models do not always guarantee better deployability in low-resource 

environments. 

 Hybrid or enhanced models (e.g., DenseNet121 with synthetic image augmentation or 

EfficientNetB5) show improved generalization and robustness, illustrating the trade-off between 

complexity and practical deployment. 

 Overall, this table emphasizes practical advantages, limitations, and deployability considerations 

rather than providing a strict quantitative ranking, helping readers identify suitable architectures for 

specific field applications. 

Table 1. Qualitative summary of pre-trained deep learning models for plant leaf disease detection. 

Ref. 

No. 

Model 

Architecture 
Plant 

Dataset 

Size 

Accur

acy 

(%) 

Model 

Size 

Edge 

Deploy

able 

Advantages Disadvantages 

[22] DenseNet121 Tomato 
PlantVillag

e )16,012( 
97.11 

8 Million 

Parameters 
NO 

Uses synthetic data (C-

GAN) for better 

generalization 

Slightly below top-

performing models 

[23] AlexNet Tomato 
PlantVillag

e (3,000) 
98.49 

61 Million 

Parameters 
NO 

Preprocessing and feature 

enhancement improve 

classification 

Large model, not ideal 

for low-end devices 

[24] MobileNetV2 Tomato 
PlantVillag

e (18,160) 
99.30 

3.4 Million 

Parameters 
YES 

Compact, runtime 

augmentation improves 

robustness 

Overfitting and 

negative transfer risks 

[25] ResNet50 Apple 
PlantVillag

e (12,000) 
97.20 

25.6 

Million 

Parameters 

NO 
Strong performance on 

complex inputs 

High computational 

cost 

[26] VGG16 Tomato 
PlantVillag

e (5,000) 
94.80 

138 Million 

Parameters 
NO Reliable and widely used 

Very large model, not 

suitable for embedded 

devices 

[27] InceptionV3 
Grapevi

ne 

PlantVillag

e (8,000) 
98.50 

23.8 

Million 

Parameters 

NO 
Excellent accuracy and 

balanced metrics 

Computationally 

demanding 

[28] 
CNN 

(Custom) 

Multi-

crop 

PlantVillag

e (~8,000) 
96.10 

Not 

Reported 
NO 

Simple CNN architecture 

with competitive accuracy 

Limited scalability and 

edge deployment 

details 

[29] 
EfficientNetB

5 
Tomato 

PlantVillag

e (11,000) 
99.07 

30 Million 

Parameters 
YES Efficient and accurate 

High complexity, not 

real-time friendly 

[30] SqueezeNet Banana 
PlantVillag

e (937) 
96.25 

1.2 Million 

Parameters 
YES 

Extremely lightweight, fast 

inference 
Limited generalization 

[31] 
EfficientNet 

B7 
Grape 

PlantVillag

e (9,027) 
98.70 

66 Million 

Parameters 
NO High precision, compact 

Very low recall, 

possible class 

imbalance 
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4.3 | Enhanced and Altered Models for Plant Leaf Diseases Detection 

Beyond standard transfer learning approaches, several studies have proposed customized or enhanced 

convolutional neural network (CNN) architectures to improve plant leaf disease detection. These models are 

primarily designed to overcome limitations observed in conventional CNNs, such as class imbalance, limited 

generalization on small datasets, high computational cost, and restricted deployability on mobile or edge 

devices. 

Beyond transfer learning with pre-trained architectures, a second category of studies focuses on enhanced 

and customized CNN models specifically designed or modified for plant leaf disease detection. These 

approaches aim to reduce architectural complexity, improve feature localization, and address limitations such 

as overfitting, class imbalance, and real-time deployability—particularly in agricultural environments with 

limited computational resources. The ten studies summarized in Table 2 [32–42] were selected based on three 

main criteria: 

i. the use of customized or structurally modified CNN architectures rather than direct fine-tuning of 

standard pre-trained models; 

ii. publication within the 2021–2023 period, reflecting recent methodological trends; and 

iii. explicit reporting of architectural enhancements, dataset characteristics, or efficiency-related 

considerations relevant to practical deployment. 

This selection enables a focused and fair comparison within a homogeneous methodological group, avoiding 

direct comparison with large-scale pre-trained networks discussed in Table 1. 

Early customized CNNs trained on relatively small, crop-specific datasets demonstrated high precision, recall, 

and F1-scores despite modest overall accuracy, revealing both the sensitivity of such models to dataset size 

and their susceptibility to overfitting [32,35]. In contrast, lightweight CNN architectures evaluated on larger 

benchmark datasets—such as PlantVillage—achieved a more balanced trade-off between accuracy and 

computational efficiency, making them more suitable for mobile and edge-based agricultural applications [33]. 

Several studies introduced architectural enhancements to improve feature representation and disease 

localization. Attention mechanisms were incorporated to emphasize disease-affected regions, leading to 

notable gains in classification accuracy, albeit with increased parameter counts and computational overhead 

[34]. Other works explored modified loss functions to address class imbalance and multi-crop classification 

scenarios, resulting in improved F1-scores but sometimes reduced generalization to unseen data [35].  

Additional strategies, including image enhancement, feature fusion, ensemble learning, and hybrid CNN 

frameworks, were proposed to improve robustness across varying crop types and disease patterns [36–40]. 

From a deployment perspective, a clear trade-off emerges between model accuracy and efficiency. Extremely 

lightweight architectures, such as convolutional autoencoder–CNN hybrids with only a few thousand 

parameters, demonstrate strong potential for edge deployment but may be more sensitive to noise and real-

field variations [41]. Conversely, highly complex multi-channel CNNs inspired by Inception-based designs 

achieve state-of-the-art accuracy across multiple crops but impose significant computational and memory 

demands, limiting their suitability for real-time or low-resource agricultural settings [42]. 

Table 2 provides a qualitative comparison of these enhanced and customized CNN-based approaches, 

emphasizing architectural modifications, dataset scale, reported accuracy, model size, and practical 

deployability. Rather than presenting a strict quantitative ranking, the table facilitates aggregated insight into 

the trade-offs between performance, robustness, and computational efficiency. 

Overall trends observed from Table 2 indicate that: 

 Lightweight and compact CNN architectures achieve competitive performance while offering greater 

suitability for edge and mobile deployment. 
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 Attention-based and feature-enhanced models improve localization and classification accuracy but 

increase architectural complexity. 

 High reported accuracy does not necessarily translate into practical deployability, particularly for real-

time field applications. 

 Models evaluated on small or single-crop datasets often report optimistic metrics that may not 

generalize well to real-world agricultural conditions. 

Consequently, enhanced and customized CNN architectures highlight the ongoing trade-off between 

accuracy, robustness, and deployability, reinforcing the need for balanced model design tailored to realistic 

agricultural environments. 

 

Table 2. Qualitative summary of enhanced and customized deep learning models for plant leaf disease detection. 

Ref

No. 

Model 

Architecture 
Plant 

Dataset 

Size 

Accuracy 

(%) 

Model 

Size 

Edge 

Deployable 
Advantages Disadvantages 

[32] Basic CNN Tomato 

BananaLS

D dataset 

(3,000) 

88.17 

Not 

reported 

(Lightweig

ht CNN) 

YES 

High precision, 

recall and F1 

(99%) on small 

dataset 

Low overall 

accuracy; possible 

overfitting 

[33] 
Lightweight 

CNN 
Tomato 

PlantVillag

e (18,160) 
96.87 

0.494 

Million 

Parameter

s 

YES 

Efficient with 

low parameters 

(0.494M); 

suitable for 

large datasets 

Slightly lower 

accuracy than 

advanced models 

[34] 
CNN with 

Attention 
Tomato 

PlantVillag

e (3,000) 
98.49 

1.42 

Million 

Parameter

s 

can be 

deployed on 

edge devices 

with 

additional 

optimization 

technique 

Attention 

mechanism 

enhances focus 

on diseased 

regions; 

competitive 

accuracy 

Increased 

complexity (1.42M 

parameters); less 

suitable for low-end 

devices 

[35] 

CNN + 

Modified Loss 

Function 

Tomato 
PlantVillag

e (3,000) 
88.17 

Not 

reported 

(Lightweig

ht CNN) 

can be 

deployed on 

edge devices 

with 

additional 

optimization 

technique 

High F1-score 

(99%) due to 

tailored loss 

function 

Low overall 

accuracy; limited 

generalization 

[36] 

Deep CNN 

with Image 

Enhancement 

Tomato 
PlantVillag

e (12,693) 
97.36 

9.5 Million 

Parameter

s 

NO 

High accuracy 

due to input 

image 

enhancement 

Large model (9.5M 

parameters); higher 

storage requirements 

[37] 

CNN with 

Transfer 

Learning (e.g., 

VGG) 

Apple 
PlantVillag

e (5,000) 
95.50 

0.15 

Million 

Parameter

s 

YES 

Good 

generalization; 

compact model 

(150K 

parameters) 

Limited flexibility 

outside pretrained 

domain 

[38] Ensemble CNN Potato 
PlantVillag

e (6,000) 
94.80 

High 

(multiple 

CNNs) 

NO 

Ensemble 

improves 

robustness and 

reliability 

Higher 

computational load 

and inference time 

[39] 
CNN + Data 

Augmentation 

Strawberr

y 

PlantVillag

e (4,500) 
96.00 

Not 

reported 

(Moderate 

size) 

can be 

deployed on 

edge devices 

with 

additional 

Improved 

performance on 

imbalanced 

datasets via 

augmentation 

Dependent on 

quality of 

augmentation; 

moderate complexity 
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optimization 

technique 

[40] 
CNN with 

Feature Fusion 
Mango 

MangoLeaf

BD  (7,000) 
97.50 

Not 

reported 

(Multi-

branch 

CNN) 

can be 

deployed on 

edge devices 

with 

additional 

optimization 

technique 

Multi-scale 

feature fusion 

enhances 

representation 

of disease 

patterns 

Increased training 

time and memory 

usage 

[41] 
Convolutional 

Autoencoder 
Peach 

Peach 

disease 

dataset 

(4,457) 

98.38 

~9 K 

parameter

s 

YES 

Very 

lightweight (9K 

parameters); 

efficient 

encoding 

May underperform 

on unseen noise or 

real-world variations 

[42] 

Modified 

MCNN based 

on InceptionV3 

Various 

crops 
– 99.48 

Very 

Large 

(Inception

-based) 

NO 

State-of-the-art 

accuracy; strong 

generalization 

across crops 

High computational 

complexity; heavy 

resource usage 

 

4.4 | Cascaded and Hybrid Models for Plant Leaf Diseases Detection 

To address limitations observed in single-model CNN architectures, several studies have explored hybrid and 

cascaded deep learning frameworks that integrate multiple learning components, such as CNNs with RNNs, 

LSTMs, U-Nets, autoencoders, classical machine learning classifiers, or graph-based models. These 

architectures aim to enhance feature representation, improve robustness, and capture complementary spatial, 

temporal, or relational characteristics in plant leaf disease images. 

In addition to standalone CNN architectures and customized lightweight models, a third research direction 

explores cascaded and hybrid deep learning frameworks for plant leaf disease detection. These approaches 

integrate CNNs with complementary components—such as recurrent neural networks (RNNs), segmentation 

networks, classical machine learning classifiers, or graph-based models—to enhance feature representation, 

localization, and classification robustness across diverse crops and datasets. 

The ten studies summarized in Table 3 [43–55][43–55][43–55] were deliberately selected based on four 

criteria: 

i). the adoption of multi-stage or hybrid architectures combining CNNs with additional 

learning or processing modules; 

ii). publication within the 2020–2025 timeframe, reflecting contemporary hybrid modeling 

trends; 

iii). coverage of diverse crop species and dataset types, including benchmark and field-collected 

data; and 

iv). explicit discussion of accuracy–complexity–deployability trade-offs. 

This grouping enables a focused evaluation of cascaded and hybrid designs as a distinct methodological class, 

rather than direct comparison with pure CNN or transfer learning approaches presented in Tables 1 and 2. 

From an architectural perspective, hybrid models can be broadly categorized into four groups. 

The first group comprises CNN–sequence-based hybrids, such as CNN–RNN, CNN–LSTM, and CNN–

BiLSTM models, which aim to capture dependencies within extracted feature sequences and have shown 

improved representation capability in tomato and banana disease detection tasks [43,51,53]. 

The second group includes CNN–segmentation-based pipelines, where CNN classifiers are combined with 

U-Net or region-of-interest (ROI) extraction modules to improve spatial localization of disease symptoms, 

particularly for rice and guava datasets [47,48]. 



 Smart Detection Techniques for Plant Leaf Diseases Using Deep Learning : A Systematic Literature Review 

 

02

 

  
The third category consists of CNN–classical classifier hybrids, integrating deep feature extraction with SVM, 

Random Forest, or KNN classifiers to enhance decision boundaries and interpretability across multiple crops 

[45,49,50,52]. 

Finally, recent studies have explored graph-based extensions, such as CNNs coupled with graph convolutional 

networks (GCNs), to explicitly model relationships among image regions or features, demonstrating strong 

performance on potato disease datasets [54]. 

Despite their strong reported accuracy, most cascaded and hybrid architectures introduce additional 

computational overhead due to multi-stage processing, sequential components, or complex architectural 

coupling. Consequently, many models—particularly those based on VGG16, ResNet101, or DenseNet 

backbones—exhibit limited suitability for real-time or edge deployment despite their high classification 

performance[45,48,51,52]. 

In contrast, lightweight cascaded solutions leveraging depthwise separable convolutions, attention 

mechanisms, or texture descriptors such as Local Binary Patterns (LBP) attempt to balance accuracy and 

efficiency, making them more suitable for deployment on low-end or edge devices [44,55]. However, these 

models may remain sensitive to noise, background clutter, or complex real-field conditions. 

Importantly, reported accuracy values across hybrid and cascaded models should be interpreted with caution. 

Substantial variations in dataset size, crop species, image resolution, preprocessing pipelines, and evaluation 

protocols significantly limit the validity of direct quantitative comparison. Therefore, meaningful insight is 

better obtained by jointly considering accuracy, architectural complexity, model size, and deployability 

constraints, rather than relying on accuracy alone. 

Table 3 provides a qualitative and comparative overview of representative cascaded and hybrid deep learning 

approaches for plant leaf disease detection, emphasizing the trade-offs between performance, architectural 

complexity, and practical deployment considerations, rather than serving as a strict quantitative ranking. 

Overall observations from Table 3 indicate that: 

 Hybrid CNN–sequence models enhance feature modeling but incur higher memory usage and 

inference latency. 

 CNN–segmentation pipelines improve disease localization but often require large computational 

resources. 

 CNN–classical classifier hybrids offer improved decision-making but suffer from slow inference 

during testing. 

 Lightweight cascaded architectures with attention or texture-based features provide a better balance 

between accuracy and edge deployability. 

 High reported accuracy does not necessarily imply real-world suitability, particularly in resource-

constrained agricultural environments. 

Accordingly, cascaded and hybrid deep learning models highlight the inherent trade-off between performance 

enhancement and system complexity, underscoring the need for careful architectural selection when targeting 

real-time and edge-based plant disease detection systems. 

Table 3. Qualitative summary of cascaded and hybrid deep learning models for plant leaf disease detection. 

Ref

No. 

Model 

Architecture 
Plant 

Dataset 

Size 

Accuracy 

(%) 

Model 

Size 

Edge 

Deployable 
Advantages Disadvantages 

[43] 

Hybrid 

CNN–RNN 

(ToLeD) 

Tomato 
PlantVilla

ge 
97.20 

~5–7 

Million 
No 

Combines spatial 

and temporal 

features, improving 

Increased latency and 

training time due to 
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(~8,000 

images) 

paramet

ers 

representation 

capability 

sequential RNN 

component 

[44] 

CNN with 

Depthwise 

Separable 

Convolution 

and Soft 

Attention 

(FL-ToLeD) 

Tomato 

PlantVilla

ge (25,127 

images) 

99.04 

~2.1 

Million 

paramet

ers 

Yes 

Lightweight design 

optimized for low-

end and edge devices 

with attention-driven 

focus 

Architectural 

complexity may 

increase training 

instability 

[45] 
VGG16 with 

SVM classifier 

Multiple 

crops 

(14 

species) 

PlantVilla

ge 

(~54,000 

images) 

97.82 

~138 

Million 

paramet

ers 

No 

Strong deep feature 

extraction with 

robust classical 

classification 

Extremely large model 

size; unsuitable for 

embedded or edge 

systems 

[46] 

MobiRes-Net 

(ResNet + 

MobileNet 

hybrid) 

Olive 

Custom 

field 

dataset 

(5,400 

images) 

97.08 

~6–8 

Million 

paramet

ers 

can be 

deployed on 

edge devices 

with 

additional 

optimizatio

n technique 

Balanced trade-off 

between accuracy 

and efficiency 

Moderate memory 

usage and inference 

cost 

[47] 

MobileNetV2 

with U-Net 

segmentation 

Guava 

Custom 

dataset 

(1,316 

images) 

83.40 

~7.5 

Million 

paramet

ers 

can be 

deployed on 

edge devices 

with 

additional 

optimizatio

n technique 

Effective disease 

localization through 

segmentation 

Low classification 

accuracy on small 

datasets 

[48] 

DenseNet 

with 

Improved U-

Net and ROI 

Extraction 

Rice 

Custom 

dataset 

(2,988 

images) 

96.00 

~18.5 

Million 

paramet

ers 

No 

Precise localization 

of diseased regions 

and strong detection 

performance 

High computational 

complexity and 

memory requirements 

[49] 

CNN with 

Random 

Forest 

classifier 

Apple 

PlantVilla

ge (5,000 

images) 

94.50 

~4–6 

Million 

paramet

ers + 

RF 

No 

Combines deep 

feature extraction 

with interpretable 

ensemble decision-

making 

Slow inference due to 

Random Forest 

component 

[50] 

CNN with 

KNN-based 

classifier 

Rice 

Custom 

dataset 

(8,500 

images) 

97.20 

~3–5 

Million 

paramet

ers + 

KNN 

No 

High accuracy for 

well-separated 

classes 

Very slow testing due 

to distance-based KNN 

computation 

[51] 
VGG16 with 

LSTM 
Tomato 

PlantVilla

ge (6,000 

images) 

96.90 

Over 

140 

Million 

paramet

ers 

No 

Captures sequential 

patterns in extracted 

features 

Very high memory 

usage and inference 

latency 

[52] 
ResNet101 

with SVM 

Grapevi

ne 

PlantVilla

ge (10,000 

images) 

98.20 

~44 

Million 

paramet

ers 

No 

Strong deep feature 

representation and 

stable classification 

Heavy storage 

requirements and 

slower runtime 

[53] 
DenseNet 

with BiLSTM 
Banana 

Custom 

dataset 

(4,500 

images) 

95.70 

~9–11 

Million 

paramet

ers 

can be 

deployed on 

edge devices 

with 

additional 

optimizatio

n technique 

Integrates spatial and 

temporal feature 

modeling 

Higher training 

complexity due to 

BiLSTM 

[54] 

EfficientNet 

with Graph 

Convolutional 

Potato 
Custom 

dataset 
97.60 

~6–8 

Million 

can be 

deployed on 

edge devices 

Captures relational 

information via 

Complex 

implementation and 
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Network 

(GCN) 

(3,000 

images) 

paramet

ers 

with 

additional 

optimizatio

n technique 

graph-based 

modeling 

increased 

computational demand 

[55] 

Deep CNN 

with Local 

Binary 

Patterns 

(LBP) 

Multiple 

species 

PlantVilla

ge (18,160 

images) 

96.50 

~2–3 

Million 

paramet

ers 

Yes 

Lightweight 

architecture with 

effective texture-

based features 

Sensitivity to noise and 

complex background 

variations 

 

The comparison across Tables 1–3 highlights significant advances in deep learning approaches for plant 

disease diagnosis. While many models achieve high classification performance on benchmark datasets, their 

practical deployment is often constrained by factors such as computational complexity, large memory 

requirements, and limited robustness under diverse environmental conditions. 

Transfer learning methods, including DenseNet121, MobileNetV2, and EfficientNet variants, have 

demonstrated strong performance. Nevertheless, their high number of parameters, susceptibility to 

overfitting, and relatively longer inference times restrict their suitability for edge devices or mobile systems 

commonly used in precision agriculture. Models incorporating attention mechanisms, domain-adversarial loss 

functions, or feature fusion show enhanced accuracy in controlled settings, but they introduce additional 

architectural complexity and often require extensive fine-tuning, which may limit generalizability across 

different crops and field conditions. 

Cascaded and hybrid architectures combining CNNs with RNNs, U-Nets, SVMs, KNNs, or graph-based 

networks have been proposed to capture more intricate spatial and temporal patterns. While these 

architectures can provide superior feature representation and improved robustness, they generally involve 

higher computational overhead and slower inference times, constraining their applicability for real-time field 

deployment. 

Overall, although the surveyed models demonstrate impressive results on laboratory and benchmark datasets, 

several limitations remain: dependency on small or imbalanced datasets, high model complexity, and 

sensitivity to domain shifts between controlled and field images. These observations suggest that while deep 

learning techniques have made substantial progress, further research is required to enhance model efficiency, 

robustness, and adaptability for real-world agricultural applications. 

4.5 | Cascaded and Hybrid Models for Plant Leaf Diseases Detection 

Evaluation of plant leaf disease detection models extends beyond mere accuracy metrics to include 

robustness, generalization, and practical deployment considerations. Standard evaluation protocols 

commonly involve dataset splitting into training, validation, and testing subsets, often complemented with 

cross-validation techniques to mitigate overfitting and assess model stability [7]. However, significant 

variations exist across studies regarding dataset size, class distribution, image resolution, preprocessing 

pipelines, and augmentation strategies, which can substantially influence reported performance metrics [56], 

[58], [61]. Consequently, direct comparison of reported accuracy across models should be interpreted with 

caution [56]. 

Deployment constraints represent another critical dimension, particularly for applications in resource-limited 

agricultural environments. Lightweight architectures, such as MobileNetV2, SqueezeNet, and EfficientNet 

variants, have been proposed to reduce computational cost and memory footprint while maintaining 

acceptable accuracy levels [9], [10]. These models facilitate edge deployment on mobile devices or embedded 

systems, enabling real-time disease monitoring directly in the field [12], [13]. In contrast, deeper or hybrid 

models incorporating attention mechanisms, cascaded CNN-RNN architectures, or graph-based modules 

often achieve higher accuracy but incur substantial latency, energy consumption, and memory requirements, 

limiting their suitability for low-resource environments [43], [44], [45]. 
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Real-world applicability also depends on model robustness under varying field conditions, including lighting, 

occlusion, leaf orientation, background clutter, and disease severity [56], [57]. Studies have demonstrated that 

models trained solely on controlled datasets, such as PlantVillage [45], may exhibit reduced generalization 

when applied to images captured under natural conditions. Techniques including data augmentation, synthetic 

image generation via GANs, attention-based feature selection, and domain adaptation have been employed 

to enhance model resilience against such variations [34], [59]. 

Furthermore, deployment in real-world agricultural scenarios requires consideration of user accessibility and 

integration with IoT-based monitoring systems, enabling automated data acquisition and feedback for 

precision agriculture [12]. Hybrid approaches combining lightweight CNNs with autoencoders or sequential 

models have shown promise in balancing accuracy with edge-deployability, though these solutions may still 

be sensitive to noise or extreme environmental variability [41], [43]. 

In summary, comprehensive evaluation of plant disease detection models must integrate multiple criteria, 

including accuracy, computational efficiency, edge deployability, and robustness under realistic field 

conditions. Addressing these factors collectively ensures that developed models are not only scientifically 

robust but also practically applicable in precision agriculture contexts [12], [56]. 

5 | Challenges   

Identification and detection of plant leaf diseases are influenced by several factors that affect the performance, 

robustness, and deployability of deep learning models. This section summarizes the main challenges reported 

in the studies reviewed (Refs. [22]–[55]) and discusses potential mitigation strategies. 

5.1 | Limited Datasets 

Deep learning models rely heavily on large, diverse datasets for effective training. Many studies utilize public 

datasets such as PlantVillage [45], [43] or custom datasets [47], [48], but small dataset size or domain-specific 

collection can limit generalization [47], [48]. For example, PlantVillage provides standardized images of 

multiple crops and disease classes [45], but models trained on this dataset may underperform in real-field 

conditions due to domain shift [43], [47]. 

To mitigate data scarcity, researchers have applied data augmentation, synthetic image generation via GANs 

[22], and transfer learning [37], [44], which have proven effective in improving robustness and generalization 

across different crops and disease types. 

5.2 | Class Imbalance 

Imbalanced datasets, where some disease classes have significantly fewer samples than others, are common 

in plant disease datasets [24], [35]. Models trained on such datasets may bias predictions toward majority 

classes, reducing accuracy for minority classes. 

Techniques such as resampling [24], class weighting [35], and augmentation or GAN-based synthetic image 

creation [22], [28], [39] have been employed to address this issue, demonstrating improved classification for 

underrepresented diseases. 

5.3 | Image Enhancement, Region Extraction, and Symptom Differentiation 

Variations in illumination, noise, and image resolution affect feature extraction and classification accuracy 

[34], [36], [40]. Disease symptoms may blend gradually into healthy tissues, making early-stage detection 

challenging. 

Methods like ROI extraction, image enhancement, and feature fusion [36], [40] have been applied to 

emphasize relevant regions and improve symptom differentiation, while attention-based mechanisms help 

focus the model on disease-affected areas [34]. 
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5.4 | Early Lesions of Small Size 

Small lesions are crucial for early disease detection but can be lost during pooling or down-sampling 

operations in CNNs [34], [62]. Integrating attention mechanisms [34] or hybrid CNN architectures [38], [41] 

improves sensitivity to subtle symptoms, allowing accurate detection even for early-stage diseases. 

5.5 | Overfitting and Underfitting Problem 

Complex deep learning models may overfit to limited training data or underfit when unable to capture relevant 

patterns [33], [35], [36]. Mitigation strategies include: 

 Early stopping during training [35] 

 Checkpointing best-performing models [33] 

 Lightweight architectures to reduce parameter overcapacity [32], [44] 

5.6 | Challenges in Fast and Efficient Detection of Plant Diseases 

Deep learning models often require significant computation, limiting real-time applicability and edge 

deployment [25], [29], [42], [44]. Lightweight and efficient architectures such as MobileNetV2-based models 

[24], [44], Convolutional Autoencoder hybrids [41], and depthwise separable convolutions [44] balance speed 

and accuracy, enabling deployment in resource-constrained agricultural environments. 

5.7 | Visual Ambiguity and Localization Challenges in Plant Diseases Detection 

Certain plant species and diseases exhibit similar leaf morphology or co-occurring symptoms, complicating 

detection [43], [51], [55]. Techniques such as feature fusion, graph-based modeling, and multi-branch CNNs 

[54], [55] help models differentiate visually similar diseases. Attention-based mechanisms ([34], [44]) and 

cascaded architectures [43], [53] improve localization and robustness in challenging visual scenarios. 

6 | Conclusion and Future work  

This survey has provided a comprehensive review of recent advances in plant disease detection using deep 

learning techniques, emphasizing the strengths, limitations, and practical challenges associated with their 

deployment in smart agriculture. The critical importance of early disease detection is highlighted, as timely 

interventions can significantly reduce crop loss and enhance food security [22, 23, 43]. 

A comparative analysis of various models, including conventional deep learning architectures, pre-trained 

networks, enhanced CNN models, and hybrid frameworks, reveals that while many approaches achieve high 

classification accuracy, they frequently encounter issues such as computational inefficiency, increased latency, 

and limited generalization under real-world conditions [24, 44, 49]. Key challenges identified include: 

 Limited dataset availability and diversity, constraining model generalization across crops and 

environmental conditions [45, 47, 48]. 

 Class imbalance, which negatively affects predictive performance for minority disease classes [22, 24, 

35]. 

 Visual ambiguity and symptom localization, where overlapping or hidden disease signs complicate 

accurate detection [34, 43, 55]. 

 Detection of early-stage diseases, where small lesions may be missed during feature extraction or 

down-sampling [34, 44]. 

 Resource constraints, as high-performance models often require substantial computational power, 

limiting deployment on mobile or edge devices [44, 32, 46]. 
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Prioritized research directions are recommended as follows: 

1. Development of lightweight and robust architectures: Emphasis should be placed on efficient CNNs, 

hybrid models with attention mechanisms, and residual networks capable of handling high-resolution 

leaf images while reducing inference time [24, 34, 44, 51]. 

2. Dataset expansion and standardization: Future work should focus on creating large-scale, diverse 

datasets that include multiple crop species, field conditions, and mixed infections. Strategies may 

involve citizen science initiatives, crowd-sourced image collection, and synthetic augmentation using 

GANs [22, 23, 39, 56]. 

3. Deployment scenarios: Models should be evaluated for practical deployment, including mobile 

applications, IoT-enabled sensors, and UAV-based platforms, with benchmarks that reflect real-field 

variability such as lighting, occlusion, and overlapping leaves [9, 12, 44]. 

4. Interpretability and explainability: Incorporating methods such as saliency maps, Grad-CAM, and 

feature visualization is essential to improve user trust, model transparency, and actionable decision-

making in agricultural contexts [43, 54, 55]. 

5. Comprehensive evaluation protocols: Establishing standardized metrics, benchmark datasets, and 

evaluation pipelines will guide future research and enhance reproducibility, allowing fair comparison 

across models and deployment scenarios [7, 56]. 

It is important to acknowledge the limitations of this survey itself. The review primarily considers studies 

published in English, which may introduce a language bias. Additionally, the literature search was confined 

to selected databases IEEE Xplore, SpringerLink, ScienceDirect, and Google Scholar, potentially excluding 

relevant studies from other sources. The survey mainly focuses on CNN-based architectures, with limited 

coverage of transformer-based or other emerging deep learning models. Recognizing these constraints 

provides context for interpreting the findings and highlights opportunities for more inclusive and 

comprehensive future reviews [7, 56]. 

Furthermore, future research should also consider data ethics, privacy, and user-centered design to ensure 

responsible deployment. This includes evaluating the potential consequences of misdiagnosis, integrating 

human–AI interaction strategies, and designing interfaces accessible to farmers [6, 12]. Addressing these 

aspects will enhance real-world applicability, trust, and adoption of deep learning-based plant disease 

detection systems. 

By addressing these prioritized directions, future research can bridge the gap between algorithmic 

development and practical application, ultimately maximizing the impact of AI in sustainable and precise 

agricultural disease management [22, 43, 44]. 
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