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Abstract

Diabetes mellitus (DM) is a major health problem and the most prevalent worldwide. Diabetic foot (DF) is the
most common complication of DM, which can lead to death, amputation, and plantar ulcers. Early detection of
these complications protects the diabetic patient from dangerous stages that lead to amputation. This study
explores the effectiveness of computer-aided diagnostic systems, particularly those that utilize the power of
artificial intelligence (AI) and deep learning (DL). AI and DL may provide promising means of eatly detection
and diagnosis of DF complications. In addition, these have the potential to revolutionize patient care by
providing tools that can analyze complex medical data with remarkable accuracy and speed. Using thermal
imaging is an innovative approach that has recently gained more attention. Infrared thermal imaging captures heat
emanating from the body, providing a non-invasive way to detect abnormal plantar temperatures that indicate
underlying inflammation or infection. Machine learning (ML) and DL classification techniques improve the
effectiveness of computer-aided detection (CAD) of DF. By training algorithms on huge data sets, these systems
can learn to identify patterns and anomalies that otherwise would elude human detection. This study explores
several ML techniques, with a particular emphasis on DL classification to accurately identify the feet of diabetic
patients. The findings from this research will contribute to future studies aimed at improving detection processes
and helping medical professionals deliver timely and effective care to their patients. By automating the initial
screening process, healthcare providers can priotitize patients who need immediate attention. This will improve
resource allocation and potentially reduce the incidence of serious complications such as ulcers and amputations.
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1| Introduction

Every year, more than one million diabetic individuals have their feet amputated. This is due to a lack of
early ulcer detection and appropriate treatment by specialists. According to World Health Organization
(WHO) reportts, diabetes has become more common around the world. This affects approximately 422
million people wotldwide [1]. Furthermore, it claims the lives of roughly 1.6 million individuals annually.
According to the WHO, approximately 10% of pregnant women suffer from gestational diabetes. Factors
such as DM, obesity, hypettension, and hypetlipidemia ate influencing Egypt's national morbidity and
mortality rates, according to mounting evidence. It accounts for approximately 26% of all deaths caused by

chronic conditions [2].
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Diabetic mellitus (IDM) is a serious chronic condition that affects many people with high blood sugar levels,
leading to complications such as damage to blood vessels, nerves, and eyes, which may result in ulcers. The
main cause of these ulcers is a lack of proper blood circulation and nerve damage [3]. There are two types of
diabetes. Type 1 diabetes occurs when the pancreas does not produce any insulin for the body, causing
many problems. Lifestyle factors such as being overweight, poor diet, and lack of physical activity
commonly cause type 2 diabetes. Type 2 diabetes, also known as non-insulin-dependent or adult-onset
diabetes, impacts over 95% of individuals with the condition. The main factors contributing to this type of
diabetes are elevated body weight and inactivity. Gestational diabetes is Hyperglycemia during pregnancy
occurs when blood glucose levels are above normal. Gestational diabetes occurs during pregnancy [4].

Deep learning (DL) methods enable computers to learn, observe, and understand by gathering and analyzing
massive amounts of data. Diabetic foot (DF), a disease prevalent in many societies, continues to require
extensive research due to its serious nature [5]. Doctors typically manually identify this disease by examining
its image or the patient's foot. Image processing techniques create an automated system for DF screening,
heavily relying on the extraction of pertinent features for the classification of diabetes illnesses [6].

Classification systems play a central role in the application of artificial intelligence (Al) to medical image
analysis [8]. In this context, image processing enables the extraction of relevant features from 2D and 3D
datasets, supporting diagnostic decisions and treatment planning. AI models typically operate in two phases:
training and testing [9-10]. During training, the model learns from labeled images, identifying patterns and
constructing decision rules based on key features such as shape, texture, or pressure points. These features
help distinguish between clinical outcomes, such as identifying the risk of diabetic foot ulcers (DFUs).
Feature selection techniques are used to retain only the most relevant data, improving the model’s accuracy
and efficiency. Once trained, the model enters the testing phase, applying learned knowledge to predict
outcomes for new, unseen images. Through this process, classification systems enable accurate and
automated interpretation of medical images, improving early detection and patient care in DFU cases.

An accurate treatment for DF primarily depends on the correct diagnosis, often aided by advanced imaging
techniques. The more advanced the image quality, the higher the accuracy. These include X-rays, infrared
shafts, ultrasound, magnetic resonance imaging (MRI), necropsies, and thermography. When it comes to
dealing with images, they can be either 2D, which uses vertical and perpendicular dimensions (X and Y), or
3D, which adds depth (Z) [11].

X-rays are electromagnetic radiation that can penetrate solid objects, such as the human body, to create
internal images for diagnosing and treating medical conditions. Medical imaging uses invisible beams of
light, known as infrared shafts, to detect heat and identify tumors, fractures, and other abnormalities [12].
Ultrasound commonly diagnoses pregnancy and other medical conditions by using sound waves to create
internal body images [13]. MRI uses magnetic fields and radio waves for detailed internal body images,
aiding in the diagnosis of several medical conditions [14]. Necropsies, or postmortem examinations,
determine the cause of death or other medical information. Animals can also undergo this procedure to
diagnose medical conditions. Using the IR region of the electromagnetic spectrum to find emitted energy,
infrared thermography (IR) converts IR radiation (heat) into a visible image [15]. In the medical field, IR has
emerged as a recent technique for examining diabetic feet by detecting thermal alterations in the affected
areas [16-17].

A thermal camera captures infrared thermal imaging, creating an image of the infrared radiation an object
emits. An infrared image represents each pixel as a thermal position [18-19]. IR technology has gained
interest in research due to its non-invasive nature and lack of radiation exposure, making it a safe option for
medical diagnosis. It is also more accurate and can detect subtle temperature changes that may indicate
disease [16]. The accuracy of surface temperature measurements in two-dimensional images decreases,
especially when dealing with complex objects such as human body parts, frequently resulting in false-
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positive findings. Therefore, it is not advisable to use 2D thermal imaging as a medical diagnostic tool [20—
21].

The most recent study on DF detection dates back to 2025 [22]. focusing on the potential of machine
learning (ML) techniques to enhance diagnostic accuracy and improve treatment approaches. However, it
lacked a comprehensive comparative analysis of commonly used Al methods and did not provide sufficient
insights into their practical applicability across different datasets or clinical settings. Moreover, most existing
studies have focused on individual models or specific imaging types without evaluating the broader
landscape of both ML and DL techniques. Therefore, the motivation for this survey is to address these
limitations by offering a broader and more comparative perspective:

e This study provides a summary of numerous recent studies on the identification of diabetic feet,
specifically focusing on DL techniques to enhance their accuracy in detecting the disease.

e This study also suggests future research directions by highlighting the research gaps and challenges

of existing studies.

The paper is structured in the following manner: Section two provides an explanation of the classification
systems, while sections three and four offer an overview of ML and DL, respectively. Section five presents
performance parameters; section six presents relevant previous research conducted in this field; and section
seven outlines the main new research directions. Lastly, section eight contains the conclusions.

2| Machine Learning (ML)

Traditional (shallow) ML plays a crucial role in automating medical diagnostics, including the early detection
of DF. By learning from handcrafted features in thermal or clinical images, ML algorithms can accurately
classify foot conditions based on thermal or clinical images, thus improving patient outcomes and

supporting medical decision-making [23].
2.1| Categories of Machine Learning

ML approaches can be categorized into four broad groups; each serving distinct purposes in the realm of
data analysis and decision-making. These are supervised, unsupervised, semi-supervised, and reinforcement

learning [23], as shown in Table 1.

Table 1: Machine Learning Approaches in DF Detection.

Shallow Type Definition Applications in DF detection

Supervised Uses labeled datasets to train models that predict = Classifying thermogram images as ulcer-

[24] outcomes based on input features. prone or healthy.

Unsupervised Analyzes unlabeled data to identify patterns or Grouping foot images based on hidden

[25] clusters. patterns in temperature.

Semi-supervised [26] Combines a small amount of labeled data with a Enhancing model accuracy using a few
large set of unlabeled data. labeled foot images.

Reinforcement [27] Trains models through reward-based learning in Optimizing pressure-relief treatment plans
dynamic environments. via interactive feedback.

2.2| Machine Learning Techniques

The common ML techniques include decision trees (DT), logistic regression (LR), support vector machines
(SVM), K-nearest neighbor (KINN), Naive Bayes (NB) [28]. The following section outlines commonly
applied ML techniques in DF classification.

e Decision Trees (DT): Decision Trees split data based on features to form branches leading to
classification outcomes. In diabetic foot studies, DTs can identify key risk indicators like skin
temperature or previous ulcer history [29-31].
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e Support Vector Machines (SVM): SVMs create optimal boundaries between classes in high-
dimensional data. For DF diagnosis, SVMs are used to distinguish between affected and unaffected
thermographic patterns [32-34].

e K-Nearest Neighbor (KINN): KNN classifies new instances based on the majority label of the
closest examples. In DF, it can compare foot images to known ulcer cases to determine risk levels

[35-36].

e Logistic Regression (LR): LR estimates the probability of an outcome (e.g., presence of DF)
using a logistic function. It is effective when features such as BMI, glucose levels, and image-based
scores are available [37-38].

e Naive Bayes (NB): NB classifiers use probabilistic reasoning based on Bayes’ theorem. It’s useful
in binary classification, such as determining whether a patient is likely or unlikely to develop ulcers
based on symptom presence [39-40)].

3| Deep Learning (DL)

DL is a branch of ML that employs multiple layers to extract both high-level and low-level data from inputs
such as images, numerical values, and categorical values. As shown in Figure 1, DL differs from ML in that
DL combines feature extraction and classification into a single layer, whereas ML uses separate layers for
these processes. These days, artificial neural networks (ANNSs), multi-layer perceptrons (MLPs), recurrent
neural networks (RNNs), convolutional neural networks (CNNs), generative adversarial networks (GANSs),
transformers, autoencoders, and deep Q networks are used to build most DL models. These models can be
combined with other DL models such as generative models, deep belief networks, and the Boltzmann
machine [41].

Machine Learning

B & — %% o=

Input Feature Extraction Classification Output

Deep Learning

lf.\;\ Diabotic
a —_— - % B
‘ 2 Non-diabetic

Input Feature Extraction&Classificaton Output

Figure 1. The difference between ML and DL [42].

Each level of DL captures new features and transforms the data to the next level. For example, in face
recognition applications, the initial layers detect edges, then the subsequent layers identify features such as
noses and eyes, while the third layer recognizes the entire face. Over the years, DL has shown immense
potential in medical fields such as pathology, radiology, and thermography for disease diagnosis. It also has
practical applications in analyzing molecular states and determining disease progression or therapy
sensitivity, areas often overlooked by human investigation [43].

There are several types of neural networks that form the foundation for most pre-trained models in DL:

3.1| Artificial Neural Networks (AINNs)

An ANN is a computational model that mimics the function of nerve cells in the human brain. It utilizes
learning algorithms that allow it to adapt, perceive, and acquire knowledge independently, including MLPs,
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RNNSs, and basic feedback models. Consequently, it is a valuable instrument for simulating non-linear
statistical data [44].

One of the primary advantages of an ANN is its ability to learn by observing datasets, making them
effective for approximating functions and distributions to find optimal solutions [44]. ANNSs store data
across the entire network, can function with limited information, and have the numerical strength to

perform multiple tasks simultaneously. However, large neural networks require significant processing time
[45].
3.1.1| Multi-Layer Perceptron (MLP)

Multiple layers of neurons, or nodes, connected in a feed-forward manner make up an MLP, a type of
ANN. We use it for supervised learning tasks like classification and regression. It consists of an input layer,
one or more hidden layers, and an output layer. Each layer connects neurons with weights that indicate the
strength of these connections. The input layer receives data and passes it to the hidden layers, which process
the data using activation functions such as sigmoid or Rectified Linear Unit (ReLU). The output layer
produces a result based on the inputs it has received from the hidden layers [46]. Backpropagation trains
MLPs, adjusting weights based on training errors to enhance performance. Applications such as image
recognition, natural language processing, and time series forecasting utilize them [47].

3.1.2| Recurrent Neural Networks (RINNs)

An RNN contains loops that the network uses to store information. In other words, RNNs use their
reasoning based on past experiences to predict future events. Machine translation is a typical use of RNNs

[48].

The RNN applies identical actions to all inputs and hidden layers, resulting in an output that employs the
same parameters for each input. This approach reduces the complexity of the parameter set compared to
other neural networks. The drawbacks of RNN are that it performs slow and complex training operations,
making it difficult to process longer sequences [49].

3.2| Advanced Deep Learning Models

We will discuss the most advanced models, including CNNs, GANs, Transformers, Autoencoders, and
Deep Q Networks (DQNs), in this section. These models represent the advanced and specialized aspects of
DL, including tasks such as image recognition, generative modeling, and reinforcement learning.

3.2.1| Convolution Neural Networks (CINNs)

CNNss specialize in handling structured data sets such as image arrays and are highly effective for visual
tasks such as image classification, object detection, and segmentation [50]. Additionally, it has experience
using natural language processing to categorize texts. The patterns in the input image, such as lines,
gradients, circles, or even eyes and faces, are very well recognized by CNNs. CNNs do not require any prior
image processing, in contrast to older computer vision algorithms. Image analysis applications such as
segmentation, object detection, and image recognition primarily utilize CNN [51]. The CNN structure
consists of three components: input, hidden layers, and output, with the number of hidden layers varying
depending on the design. Hidden layers serve as intermediate levels in feedforward networks [52]. Figure 2
illustrates the general architecture of a CNN model.
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O

Figure 2. The general architecture of a CNN model.

Since their introduction in 1989, many CNN models have excelled in disease diagnosis over the past 30
years. Figure 3 shows the most commonly used CNN models.

A CNN consists of convolution layers, pooling layers, and fully connected layers. Its goal is to acquire
spatial hierarchies of features using a backpropagation algorithm autonomously and adaptively [53]. CNN
contains hidden layers and convolutional layers, which form the foundation of ConvNets. The
convolutional layer receives the input volume and performs a mathematical scalar product with the feature
array (filter), producing feature maps as output [54].

Employing CNNs has many advantages: CNN's weight-sharing capability reduces the number of trainable
parameters, improving generalization and preventing overfitting. By learning feature extraction and
classification layers together, CNNs produce highly organized outputs based on extracted features. They are
easier to implement on a large scale compared to other neural networks, and they excel at image
classification. On the other hand, CNN does not encode the position and orientation of an object [55].

2016
SquemNet 201920
ENet EfficientNet
2012 2017
2015
AlexNet ResNet ShuffleNet

DenseNet

Figure 3. Widely used CNN models.

3.2.2| Generative Adversarial Networks (GANs)

GAN:Ss, introduced in 2014 by lan Goodfellow and colleagues, are advanced DL models aiming to generate
high-quality synthetic data derived from real data. This is achieved through a distinctive training method
involving two neural networks: the generator and the discriminator. The generator produces synthetic data
from random noise, and the discriminator distinguishes between real and synthetic data. Through iterative
training, the generator improves the realism of its data, while the discriminator becomes better at identifying
fake data [50].

Throughout training, the discriminator improves its ability to differentiate between real and synthetic data,
creating a feedback loop. Enhancements in the generator prompt adaptations in the discriminator and vice
versa, resulting in continuous improvement for both producing realistic data and accurately classifying
samples [57-58].
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3.2.3| Transformer

Transformer is a unique DL infrastructure that executes tasks sequentially. Many fields, including computer
vision and speech processing, use it. This is due to its efficiency in managing large data sets and long-term
dependencies [59].

Key features empower the Transformer's performance, with the self-attention mechanism being central. It
evaluates word importance in sequence, capturing relationships regardless of position. Multi-head attention
enhances this by using multiple heads simultaneously, each learning distinct weights. To address the lack of
positional information, positional encoding provides sequential order details. The encoder-decoder
architecture includes multiple layers, with sub-layers featuring multi-head self-attention and position-wise
feedforward networks. Layer normalization and residual connections ensure stable training. Fach layer is
equipped with an independent feedforward network that operates on each sequence position. Attention
masks are used during training to keep track of positional information, and the model tries to reduce task-
specific losses like cross-entropy for machine translation. This makes it better at handling complex
sequential relationships [60].

3.2.4| Autoencoders

Autoencoders, pivotal in unsupervised learning, are essential for tasks of dimensionality reduction, feature
learning, and generative modeling. These neural networks create a concise representation of input data by
encoding it into a lower-dimensional space. Autoencoders, pivotal in unsupervised learning, are essential for
tasks of dimensionality reduction, feature learning, and generative modeling. They work by encoding input
data into a lower-dimensional space, then reconstructing it. Autoencoders include key components: an
encoder, a decoder, and a latent space representing condensed input information. The goal during training is
to minimize the difference between the original and reconstructed data, typically using mean squared error
(MSE). Training involves encoding the input, decoding it, and updating model parameters through
backpropagation with optimization techniques like stochastic gradient descent (SGD) [61].

Standard autoencoders have problems like overfitting, not regularizing enough, not being able to manage
sparse or noisy input well, not being able to control the latent space, and deterministic encoding. There are
several types of autoencoders available: contractive autoencoders with regularization, sparse autoencoders
that promote sparsity, incomplete autoencoders for data compression, and denoising autoencoders that
remove noise from images. These problems can be solved by variational autoencoders (VAEs), which show

hidden characteristics as a probability distribution over a continuous latent space that makes sampling easier
[62-63].

3.2.5| Deep Q Networks (DQNs)

DQNs, a robust paradigm in reinforcement learning, excel in scenarios where an agent interacts with an
environment to maximize cumulative rewards. Key components include Q-Learning, experience replacing
for stability and sample efficiency, and periodic updates of the target Q-network. Epsilon-Greedy
Exploration balances exploration and exploitation. The training process initializes the Q-network, includes
agent-environment interaction, stores experiences, and iteratively updates the Q-network until convergence
[64]. The way DQN combines Q-learning, experience replay, target Q-networks, epsilon-greedy exploration,
and deep neural networks (DNNs) makes it possible for reinforcement learning to work well and stay stable
in complicated settings[65].

4| Performance Parameters

Performance parameters are essential in diabetic foot (DF) detection systems to assess the model’s
diagnostic capability. These metrics ensure that automated systems can accurately distinguish between at-risk
patients and healthy individuals, thus improving clinical outcomes [66].
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Where:
e TP: True Positives (accurately identified DF cases).
e TN: True Negatives (accurately identified cases of non-DF).
e FP: False Positives (misidentified DF cases).

e EN: False Negatives (missed DF cases) [67].
Accuracy measures the proportion of true results (both true positives and true negatives) among the total
number of cases analyzed. Sensitivity, or recall, measures the ratio of true positives accurately detected by
the model. Specificity determines how accurately the model identifies actual negatives. Precision measures
the proportion of positive identifications that are actually correct. The AUC-ROC measures the ability of
the model to distinguish between classes. A higher AUC indicates better performance [68].

These parameters are crucial in the medical field, particularly in diabetic foot diagnosis, where missing a true
case (false negative) could lead to serious complications such as infection or amputation. Therefore,
sensitivity is often prioritized to ensure that all potential positive cases are detected. However, high
sensitivity without sufficient specificity may lead to false alarms, increasing patient stress and unnecessary
interventions.

While accuracy is a commonly reported metric, it can be misleading when the dataset is imbalanced—a
common issue in medical datasets where the number of healthy cases may greatly outnumber the diseased
ones. In such cases, the Fl-score, which balances precision and recall, provides a more meaningful
evaluation. Similarly, AUC-ROC is particularly useful for comparing models across different thresholds,

making it an excellent tool for understanding overall classification performance.

In summary, no single parameter is sufficient on its own. A combination of these indicators offers a more
comprehensive and reliable assessment of model performance, ensuring clinical decisions are both accurate
and safe.

Among the reviewed studies, F1-score and AUC are often prioritized due to the imbalanced nature of most
medical datasets, especially in DF diagnosis. Although accuracy is widely reported, it is not sufficient alone.
Sensitivity is crucial in minimizing the risk of missing critical DF cases, while specificity ensures accurate
exclusion of non-cases. A combined evaluation across these metrics yields a comprehensive understanding
of the model’s diagnostic power.

5| Diabetic Foot Relevant Research

This review encompasses studies published between 2018 and 2025, retrieved from major scientific
databases such as IEEE Xplore, PubMed, and Google Scholar. The selected literature primarily focuses on
the application of thermographic imaging and Al techniques, particulatly ML and DL, for the detection and
classification of DF complications.
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Over the past few years, considerable research has been devoted to developing automated DF detection
systems using Al-driven medical image analysis. This section critically examines the most influential
contributions within this domain, categorizing them into two primary methodological approaches: shallow

learning and deep learning.

Each study is assessed based on its objectives, data sources, sample characteristics, algorithms used,
performance metrics, and clinical relevance. The goal is to trace the evolution of diagnostic models,

highlight performance trends, and identify current limitations to guide future research efforts.

The section is structured as follows: Subsection 5.1 presents studies based on shallow learning models such
as SVM, DT, and Random Forests (RF), while Subsection 5.2 explores advanced DL architectures including
CNNs, RNNs, GANs, and Transformer-based models.

5.1| Shallow learning Techniques

There have been a few studies in recent years on the use of ML for the detection and prognosis of diabetic
foot ulcers (DFUs). F. Khan et al. [69] used a new ML approach that integrated reinforcement learning to
enhance the analysis of DFU images, obtaining a classification accuracy of 92.5% and a remarkable
efficiency gain of 78.45% in comparison to conventional methods. Sh. Hong et al. [70] concentrated on
predicting DFU recurrence using the patient's risk factors; the highest accuracy rate obtained in the study
was (93%) reported by the SVM model. However, the study suffers from a lack of dataset size and small

feature variety in terms of features.

M. Alzyoud et al. [71] considered several classifiers and feature selection techniques on two datasets (DRD
[72] and HCUP [73]), and indicated that the performance of the classifiers depend on the type of data used
(Bayes Net [74], NB, Star [75], Multi Class Classifier [76], RF, Simple Logistic [77]). S. Stefanopoulos et al.
[78] used CTREE and random forest models in order to predict the risk of major amputation in DFU,
emphasizing gangrene and systemic infection as significant predictors. N. Arteaga-Marrero et al. [80] trained
SVM classifiers based on thermographic data from the STANDUP [81], INAOE [82], and local [83]
datasets, showing Fl-scores of up to 90.27%. V. Filipe et al. [84] proposed two ML models to classify
thermograms among diabetic severity stages, where Model 2 attained an accuracy of 93.2% . R. Alfkey et al.
[85] used CNN (VGG-19) and PCA for feature representation and VGG-19 CNN [86], gradient boosting
classifier [87], XGBoost [88], and RF for classification and achieved accuracy greater than 94%. Similatly, S.
Kumar et al. [89] used several ML algorithms to test PIMA dataset [90] where logistic regression turned out

with 80% accuracy.

Other studies have investigated image-based detection approaches. A. R. Naidu et al. [91] used MATLAB
[92] for thermal image analysis, which allows non-contact acquisition of DF-related variations. J. Guzaitis et
al. [93] published a smartphone-based screening model [94] that employed thermal imaging and edge
detection to achieve more than 94% accuracy in the detection of inflammation. To assess the performance
of an ML-based scoring scheme in identifying DF A. Khandakar et al. [95] applied the Synthetic Minority
Oversampling Technique (SMOTE) [96]. CNNs and ML classifiers were benchmarked with dual-foot
thermograms and image enhancement methods, and MobileNetV2 and DenseNet201 achieved the best
balanced performances. Lastly, J. Saminathan et al. [97] experimented with thermal and color images from a
FLIR E50 thermal imaging camera [98]. They developed a textured-temperature-based algorithm for the

eatly detection of ulcer-prone regions with a detection accuracy of 95.61%.

Table 3. Summary of key studies investigating diabetic DF detection using various shallow machine learning
ML techniques. The table outlines essential aspects, including the study aims, dataset types and sources,
number of patients and images, methods employed, reported remarks.
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This subsection reviews key shallow learning models applied in DF detection. As shown in Table 3, studies
employed techniques such SVM, DT, RF, and LR. Most studies relied on thermal imaging or structured
clinical data, with datasets ranging in size and quality. While some achieved high accuracy (e.g., Altkey et al.
at 95.08%), many lacked real-world validation or suffered from small sample sizes. These limitations suggest

the need for broader datasets and external validation for future applications.

Table 4 presents the performance evaluation metrics used across the reviewed studies. It highlights the
diagnostic strength of each approach in terms of accuracy, sensitivity, specificity, precision, recall, F1-score,
and AUC, providing a comparative overview of model effectiveness in detecting diabetic foot

complications.
Table 4. Performance evaluation of ML approaches of detecting diabetic foot.
Ref Accuracy Sensitivity Specificity Precision Recall F1-score ROC-AUC
[69] 92.5% 71-98.2% N/A N/A N/A N/A N/A
[70] 93% 92% N/A 92% 92% N/A N/A
[71] N/A N/A N/A N/A N/A N/A N/A
[78] 77.7% 76.1% 79.3% N/A N/A N/A N/A
[80] N/A N/A N/A N/A N/A 90.27% N/A
[84] 93.2% 86.9% 95.4% N/A N/A 86.7% N/A
[85] 95.08% 95.08% 95.09% 97.2% N/A 95.08% N/A
[89] 80% N/A N/A N/A N/A N/A 68%
[91] N/A N/A N/A N/A N/A N/A N/A
[93] 94.28% N/A N/A N/A N/A N/A N/A
[95] N/A 95.71% N/A N/A N/A N/A N/A
[97] 95.61% N/A N/A N/A N/A N/A N/A

By organizing the findings in tabular format, this section enables a direct comparison of MI techniques,
datasets, and performance outcomes, providing a foundation for identifying future research directions.

In summary, the reviewed shallow learning studies show promising results in DF detection, especially when
using well-known classifiers like SVM and Random Forest. However, limitations such as small sample sizes,
lack of external validation, and computational complexity persist. Future research should focus on
integrating these models into real-time clinical workflows and expanding datasets for better generalization.

5.2| DL Techniques

Current studies includes various DL-based methods for DFU detection, diagnosis, and risk assessment. P.
L. Li et al. [99] introduced a novel deep learning framework based on DiffusionNet with integrated self-
attention and anatomical features, with an accuracy of 82.9%, that outperforms the baseline models and
used on a 3D foot scan dataset acquired from an EinScan Pro HD [100]. Similarly, V. Panamint et al. [102]
used ResNet50V2 with plantar thermography, obtaining an accuracy of 71.8% and the potential of
screening, with low amount of data and the integration of clinical variables.

L. Z. Chee et al. employed wearable sensor data. [103] inserted an approach combining CNN and LSTM
models, which was 91:25% accurate but depended on the acceleration of walking. A. M. El-Kady et al.
improved DFU detection with application of ResNet50 in pair with GANs of 84% diagnostic accuracy but
lacked transparency of used datasets [104].

Gulshan and Arora [105] employed thermal imaging and a CNN-RNN pipeline, achieving 97.14% accuracy
but without comparative baselines and validation. However, M. H. Alshayeji et al. [106] employed classic
feature extractions (SIFT [107], SURF [108], BOF [109]) with SVM classification, achieving an accuracy of
97.81% but missed contemporary DL lifting,
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R. N. Yousef et al. [110] presented a CNN-FES technique for the thermal image analysis with the accuracy of
99.3%, J. Reyes-Luévano et al. [111] introduced a new approach, DFU VIRNet, using estimated maps [112]
trained on multimodal data, with AUC scotes of over 0.99 for DFU and ischemia detection. N. Sharma et al.
[113] used thermal-visual HSV image fusion blended with mask-RCNN segmentation to get the 92.5%
agreement with the clinical evaluations.

Advanced models like vision transformers were also studied by H. Shao [114] achieved an accuracy of up to
99%, although the evaluation benchmarks were insufficient. Sh. Sh. Reddy et al. [115] performed a
comparison of DL architectures and VGG16 managed an accuracy of 99.51% but with little information on
its architecture. Similarly, M. Ahsan et al. [116] tested multiple CNNs on DFU2020 and found that
ResNet50 achieved the highest precision in ischemia.

A. Hernandez-Guedes et al. [117] used variational dropout and SMOTE-boosted thermograms with 90%
Fl-score. P. N. Thotad et al. [118].They employed EfficientNet [119] and obtained an accuracy of 98.97%
for DFU detection. V. Khullar et al. [120] reported better performance of the Inception ResNet V2
compared to conventional ML-based methods to classify DF from thermograms.

I. Khosa et al. [121], who achieved greater accuracy through custom CNN models on patch-level and full
thermograms. M. Ray et al. [122] used asymmetric analysis [123] and Inception ResNet V2 on thermal
images to drive mobile dependent DFU detection. Kh. Munadi et al. [124] presented a lightweight
MobileNetV2-ShuffleNet fusion architecture, which attained 100% with classification rate.

Sh. Muralidhara et al. [125], that takes advantage of deep learning models for ulcer classification with a
multi-class differentiation task improving significantly the ulcer grading by obtaining an accuracy of 0.9827.
A. Anaya-Isaza et al. [126] suggested a temperature classification index (TCI) to categorize subjects based
on temperature variation according to the following equation: (7) and more sophisticated augmentation
techniques: 100% of detection.

TCl = —TA% 0
TCIR+TCIL

where:

e T is the average temperature of both feet.

e A s the subject's age.

e The TCIR and TCIL are the thermal change indices for the right and left feet, respectively.
H. Maldonado et al. [127], has two cameras — Venice extension system (VS) camera [129] and IR thermo-
camera [130] — on both feet forming the dual focus shot, and processes the acquired image automatically to
detect necroses or sores. They combined Mask R-CNN  VD[128] with dual-view thermal imaging for a
mobile DFU detection system[131]. S. Assistant et al. [132] improved image pre-processing and thermal
analysis through clustering [133], threshold [134], compression-based [135], and watershed transformation
[136] with CNNs but without specific results. A. Bougrine et al. [137] used the U-Net [138] for thermal
image segmentation and risk assessment which was demonstrated during a prospective clinical study on 122
patients in de Mayo National Hospital [139]. L. Alzubaidi et al. [140], where DFU_QUTNet was proposed
using DAG model [141]. DFU_QUTNet was composed of input layers with three channels. All channels
were of size 224 X 224 pixels. The processing of the convolutional layer through the previous layer involved
convolution with a learnable filter set, batch normalization (BN) [142], rectified linear unit (ReLU) [143],
addition, average pooling, dropout, and fully connected (FC) layers [144]. The features were extracted by the
DFU_QUTNet network to train the SVM and KNN classifiers. For comparison, it reached a 94.5% f1-
score, which was higher than the other CNNS.

M. Goyal et al. [145] used EfficientDet on augmented DFU images and achieved high accuracy without
performance numbers. M. Kayalvizhi et al. [146] also suggested CNN+SVM hybrid models which obtained
97.9%CClassification Accuracy. Finally, Cruz-Vega et al. [147] presented a DFTNet model that employed

Fourier transform-based feature extraction and achieved better performance than AlexNet or GoogleNet,
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with a sensitivity of up to 95.34%; however, the sample size was restricted in terms of a multi-level classifier.
M. Goyal et al. [148] also reported DFUNet as a CNN for accurate DFU classification (AUC = 0.961) with
promising potential for automated diagnosis and clinical use.

DL techniques, particularly CNNs, have shown remarkable performance in the automatic detection of DF
complications. Despite this, several challenges persist, including limited annotated data, high computational
requirements, and a lack of model transparency. Emerging studies highlight the benefit of combining DL
architectures with preprocessing methods and ensemble learning strategies to improve diagnostic accuracy
and robustness.

Table 5. Comparative summary of key studies employing DL techniques for DF detection. The table
outlines the study aims, dataset characteristics, DL models applied, and reported limitations, providing
insights into current approaches and challenges in DF diagnostic automation.

In summary, DL models have achieved high accuracy across various datasets and imaging modalities.
However, the generalizability of these models remains constrained by dataset imbalance, lack of clinical
context, and interpretability issues. While architectures such as ResNet, VGG, and EfficientNet dominate
the field, hybrid approaches and attention-based models are emerging as powerful alternatives. There
remains a clear need for standardized datasets, longitudinal clinical validation, and explainable DL systems to
support clinical adoption.

Table 6. Overview of performance evaluation metrics reported in DL-based studies for diabetic foot
detection. Metrics include accuracy, sensitivity, specificity, precision, Fl-score, and ROC-AUC, enabling
comparison of diagnostic effectiveness across different models.
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Table 6. Performance evaluation of DL approaches of detecting diabetic foot.

Ref Accuracy Sensitivity Specificity Precision Fl-score ROC-AUC
[99] 82.9% N/A N/A N/A N/A N/A
[102] 71.8% 81.2% 64.0% N/A N/A N/A
[103] 91.25% N/A N/A N/A N/A N/A
[104] 84% N/A N/A 85% 0.84 N/A
[105] 97.14% N/A N/A N/A N/A N/A
[106] N/A N/A N/A 97.9% N/A 0.9995
. [110] 99.3% N/A N/A N/A N/A N/A
[111] N/A N/A N/A N/A 0.9600 0.9923
[113] 92.5% N/A N/A N/A N/A N/A
[114] 99% N/A N/A N/A N/A N/A
[115] 99.51% N/A N/A N/A N/A N/A
[116] N/A N/A N/A 99.49% N/A N/A
[117] N/A N/A N/A N/A 0.90 N/A
[118] 99% N/A N/A N/A 98% N/A
[120] N/A N/A N/A N/A N/A N/A
[121] N/A N/A N/A N/A N/A N/A
[122] N/A N/A N/A N/A N/A N/A
[124] 100% N/A N/A N/A N/A N/A
[125] 98.27% 96.84% 98.92% N/A N/A N/A
[126] 100% N/A N/A N/A N/A N/A
[127] 90% (ulcers) N/A N/A N/A N/A N/A
[132] N/A N/A N/A N/A N/A N/A
[137] N/A N/A N/A N/A N/A N/A
[140] N/A N/A N/A N/A 0.945 N/A
[145] N/A N/A N/A N/A N/A N/A
[146] 97.9% 93.6% N/A N/A N/A N/A
[147] 94.53% 95.34% 93.75% N/A N/A N/A
[148] N/A N/A N/A N/A N/A 0.961

6| The Main New Directions of Research in The Detection of DF

6.1| Directions In Image Acquisition

X-rays have traditionally been used to detect DF, but other imaging systems have also been used. For
example, infrared columns, ultrasound, magnetic resonance imaging, anatomy, and thermography have been
used to obtain more accurate information.

Recent studies are increasingly exploring infrared technology for medical imaging due to its non-invasive
nature and absence of radiation, which enhances safety in diagnosis. Moreover, it is more accurate and can
detect subtle temperature changes that may indicate the presence of a disease. Additionally, the combination
of thermography, a non-invasive technique, and advanced molecular analysis has shown promising results in
the early detection of diabetes. More research is expected to take place using infrared thermal images.

6.2 | Future Directions in ML and DL

This research compilation from 2018 to 2025 examined diverse methodologies for diagnosing and
classifying DFUs through thermal imaging techniques. For the accurate and timely detection of DFUs, the
reviewed studies have used CNNs, hybrid models, and traditional ML models, which led to significant
advancements. These methods concentrate on augmenting accuracy in DFU detection through the
optimization of model architecture, the advancement of algorithms, and the enhancement of dataset quality.
DL models, including EfficientNet and DFU_QUTNet, and hybrid approaches such as CNN-LSTM

demonstrate significant efficacy in the analysis of small medical image datasets.
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Using methods like data augmentation and transfer learning, along with adding local thermograms and
creating synthetic data, has improved model performance by making up for the lack of data. Furthermore,
multi-level image analysis that emphasizes both image-level and patch-level thermogram data has arisen as
an effective method for identifying DFUs. The integration of ML with DL through hybrid models like
CNN-SVM has improved accuracy in early detection, leveraging DL's feature extraction and ML's decision-
making capabilities. Moreover, exploring variational DL techniques, including variational dropout, has been
acknowledged as an effective strategy for improving model generalization and robustness in scenarios with
constrained datasets. Lastly, the diversity and quality of datasets remain pivotal, with studies emphasizing the

need for balanced datasets to avoid biases and enhance model performance across diverse populations.

6.3 | Directions in the Dataset

We recommend that researchers employ recognized benchmark datasets, such as those available in TREC
[149], in IR research (information retrieval), emphasizing the significance of embracing a shared and widely
acknowledged framework for evaluating algorithms. This approach fosters transparency, facilitates fair
comparisons, and drives advancements in the field through collaborative endeavors. Encouraging
researchers to adhere to these standards is crucial for making meaningful contributions to the broader
scientific community.

7| Clinical Implications and Deployment Challenges

However, despite the significant potential offered by recently developed ML and DL models for the
automatic detection and categorization of DF complications, their practical clinical implementation is
scarce. Although many studies have reported high diagnostic performance in terms of accuracy, sensitivity,
and specificity, few have been validated in real-world clinical settings, including hospitals and telemedicine
sites. This raises serious concerns about the generalizability, stability, and clinical readiness of such models
in different patient populations and hospital contexts.

There are several bottlenecks to deploying Al-based diagnostic systems in clinical practice.

e  Variability of Data: Most models are developed from limited or homogeneous datasets and cannot
fully capture age differences, skin tone variations, ulcer stages, and/or comorbidity. This limits the
generalizability of the model to a larger patient pool.

e Workflow Integration: For Al tools to be successfully integrated into clinical workflows, they must
integrate seamlessly with HISs, possess user-friendly interfaces for medical personnel, and comply
with data privacy laws and regulations.

e Model Interpretability and Clinical Trust: Most DL models are “black boxes” and provide little
insight into the reasoning behind decisions. However, it lacks visual explanations or interpretable
outputs (e.g., heatmaps), which may lower clinician trust and limit its applications.

e Resource constraints: The computational requirements of DL models can be a bottleneck in
environments where resources are scarce, such as rural or underprivileged areas. One such challenge
is the development of lightweight, mobile-friendly models.

To overcome these pitfalls, future research should focus on the following strategies:

e Conducting multicenter clinical trials to validate model performance in various healthcare

environments and patient populations.

e Developing models that are efficient and lightweight to perform in real time on mobile or
embedded devices to increase accessibility in low-resource settings.
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e Promoting interdisciplinary research: Al researchers and physicians might work together to explore

whether model outputs match clinicians' requirements and  clinical jargon.

e In addition to algorithmic performance, successful clinical adoption of Al-powered DF detection
systems relies on practicality, acceptance by clinicians, and patient safety. There is a need to narrow
the gap between research and clinical practice to accomplish real progress in early detection, early
intervention, and patient survival.

8| Conclusions

In this study, we provide an up-to-date review of the state-of-the-art techniques for diabetic foot (DF)
detection using infrared thermal imaging and machine learning (ML) and deep learning (DL) methods. It
systematically investigates 40+ studies regarding techniques, datasets, and criteria published from 2018 to
2025. Important challenges, such as data imbalance, absence of dataset standardization, small clinical
validation, and applicability of the findings in a real-world scenario, are deeply analyzed. The conclusions of
this study provide directions for further research to improve diagnostic accuracy in the transition from
animal models to the realization of Al-based diabetic foot screening tools in the clinic.

Recent advances in ML and DL techniques have notably enhanced the performance of computer-aided
diagnostic systems, particularly in medical image analysis. Traditional ML models, such as SVM and LR,
have shown good performance when combined with feature selection methods, such as Gini impurity and
information gain. In addition, CNN networks (ResNet, DenseNet, VGG16/19) and custom models
(DFUNet, etc.) were also found to perform well in detecting DFUs from thermal images. Hybrid models
that combine CNN with LSTM or SVM classifiers exploit both temporal and spatial features, achieving
better results.

Furthermore, data augmentation methods, including SMOTE, and regularization approaches, such as L1
and L2, are utilized to combat overfitting and improve generalization, especially when applied to small and
imbalanced datasets. Advanced DI.-based methods, such as EfficientDet and Vision Transformers, are also
gaining strength in challenging medical imaging tasks. Cross-validation is a fundamental step in model
evaluation, as it contributes to increasing robustness and reproducibility. Overall, the amalgamation of
these Al-driven tools has great promise in augmenting early DF detection, ultimately enhancing patient
prognosis and reducing the economic burden on healthcare services.
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Appendix

ATD Absolute Temperature Difference LPA Ieteral planter Artery

AUC Area Under the Curve MCA Medial Callcaneal Artery

BN Batch Normalization MPA Medial planter Artery

CAD  Computer Aided Detection MRI Magnetic Resonance Imaging

DF Diabetic Foot PCA Principal Component Analysis
DME  Diabetic Macular Edoema ODA Quadratic Discriminant Analysis
GNA Gaunssian Naive Bayes RELU Rectified Linear Unit

IRT Infrared Thermography ROI Region Of Interest

LCA Leteral Callcaneal Artery TCI Thermal Change Index
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