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1|Introduction 

Every year, more than one million diabetic individuals have their feet amputated. This is due to a lack of 

early ulcer detection and appropriate treatment by specialists. According to World Health Organization 

(WHO) reports, diabetes has become more common around the world. This affects approximately 422 

million people worldwide [1]. Furthermore, it claims the lives of roughly 1.6 million individuals annually. 

According to the WHO, approximately 10% of pregnant women suffer from gestational diabetes. Factors 

such as DM, obesity, hypertension, and hyperlipidemia are influencing Egypt's national morbidity and 

mortality rates, according to mounting evidence. It accounts for approximately 26% of all deaths caused by 

chronic conditions [2]. 
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Abstract 
Diabetes mellitus (DM) is a major health problem and the most prevalent worldwide. Diabetic foot (DF) is the 
most common complication of DM, which can lead to death, amputation, and plantar ulcers. Early detection of 
these complications protects the diabetic patient from dangerous stages that lead to amputation. This study 
explores the effectiveness of computer-aided diagnostic systems, particularly those that utilize the power of 
artificial intelligence (AI) and deep learning (DL). AI and DL may provide promising means of early detection 
and diagnosis of DF complications. In addition, these have the potential to revolutionize patient care by 
providing tools that can analyze complex medical data with remarkable accuracy and speed. Using thermal 
imaging is an innovative approach that has recently gained more attention. Infrared thermal imaging captures heat 
emanating from the body, providing a non-invasive way to detect abnormal plantar temperatures that indicate 
underlying inflammation or infection. Machine learning (ML) and DL classification techniques improve the 
effectiveness of computer-aided detection (CAD) of DF. By training algorithms on huge data sets, these systems 
can learn to identify patterns and anomalies that otherwise would elude human detection. This study explores 
several ML techniques, with a particular emphasis on DL classification to accurately identify the feet of diabetic 
patients. The findings from this research will contribute to future studies aimed at improving detection processes 
and helping medical professionals deliver timely and effective care to their patients. By automating the initial 
screening process, healthcare providers can prioritize patients who need immediate attention. This will improve 
resource allocation and potentially reduce the incidence of serious complications such as ulcers and amputations. 
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Diabetic mellitus (DM) is a serious chronic condition that affects many people with high blood sugar levels, 

leading to complications such as damage to blood vessels, nerves, and eyes, which may result in ulcers. The 

main cause of these ulcers is a lack of proper blood circulation and nerve damage [3]. There are two types of 

diabetes. Type 1 diabetes occurs when the pancreas does not produce any insulin for the body, causing 

many problems. Lifestyle factors such as being overweight, poor diet, and lack of physical activity 

commonly cause type 2 diabetes. Type 2 diabetes, also known as non-insulin-dependent or adult-onset 

diabetes, impacts over 95% of individuals with the condition. The main factors contributing to this type of 

diabetes are elevated body weight and inactivity. Gestational diabetes is Hyperglycemia during pregnancy 

occurs when blood glucose levels are above normal. Gestational diabetes occurs during pregnancy [4]. 

Deep learning (DL) methods enable computers to learn, observe, and understand by gathering and analyzing 

massive amounts of data. Diabetic foot (DF), a disease prevalent in many societies, continues to require 

extensive research due to its serious nature [5]. Doctors typically manually identify this disease by examining 

its image or the patient's foot. Image processing techniques create an automated system for DF screening, 

heavily relying on the extraction of pertinent features for the classification of diabetes illnesses [6]. 

Classification systems play a central role in the application of artificial intelligence (AI) to medical image 

analysis [8]. In this context, image processing enables the extraction of relevant features from 2D and 3D 

datasets, supporting diagnostic decisions and treatment planning. AI models typically operate in two phases: 

training and testing [9-10]. During training, the model learns from labeled images, identifying patterns and 

constructing decision rules based on key features such as shape, texture, or pressure points. These features 

help distinguish between clinical outcomes, such as identifying the risk of diabetic foot ulcers (DFUs). 

Feature selection techniques are used to retain only the most relevant data, improving the model’s accuracy 

and efficiency. Once trained, the model enters the testing phase, applying learned knowledge to predict 

outcomes for new, unseen images. Through this process, classification systems enable accurate and 

automated interpretation of medical images, improving early detection and patient care in DFU cases. 

An accurate treatment for DF primarily depends on the correct diagnosis, often aided by advanced imaging 

techniques. The more advanced the image quality, the higher the accuracy. These include X-rays, infrared 

shafts, ultrasound, magnetic resonance imaging (MRI), necropsies, and thermography. When it comes to 

dealing with images, they can be either 2D, which uses vertical and perpendicular dimensions (X and Y), or 

3D, which adds depth (Z) [11]. 

X-rays are electromagnetic radiation that can penetrate solid objects, such as the human body, to create 

internal images for diagnosing and treating medical conditions. Medical imaging uses invisible beams of 

light, known as infrared shafts, to detect heat and identify tumors, fractures, and other abnormalities [12]. 

Ultrasound commonly diagnoses pregnancy and other medical conditions by using sound waves to create 

internal body images [13]. MRI uses magnetic fields and radio waves for detailed internal body images, 

aiding in the diagnosis of several medical conditions [14]. Necropsies, or postmortem examinations, 

determine the cause of death or other medical information. Animals can also undergo this procedure to 

diagnose medical conditions. Using the IR region of the electromagnetic spectrum to find emitted energy, 

infrared thermography (IR) converts IR radiation (heat) into a visible image [15]. In the medical field, IR has 

emerged as a recent technique for examining diabetic feet by detecting thermal alterations in the affected 

areas [16–17]. 

A thermal camera captures infrared thermal imaging, creating an image of the infrared radiation an object 

emits. An infrared image represents each pixel as a thermal position [18–19]. IR technology has gained 

interest in research due to its non-invasive nature and lack of radiation exposure, making it a safe option for 

medical diagnosis. It is also more accurate and can detect subtle temperature changes that may indicate 

disease [16]. The accuracy of surface temperature measurements in two-dimensional images decreases, 

especially when dealing with complex objects such as human body parts, frequently resulting in false-
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positive findings. Therefore, it is not advisable to use 2D thermal imaging as a medical diagnostic tool [20–

21]. 

The most recent study on DF detection dates back to 2025 [22]. focusing on the potential of machine 

learning (ML) techniques to enhance diagnostic accuracy and improve treatment approaches. However, it 

lacked a comprehensive comparative analysis of commonly used AI methods and did not provide sufficient 

insights into their practical applicability across different datasets or clinical settings. Moreover, most existing 

studies have focused on individual models or specific imaging types without evaluating the broader 

landscape of both ML and DL techniques. Therefore, the motivation for this survey is to address these 

limitations by offering a broader and more comparative perspective:  

 This study provides a summary of numerous recent studies on the identification of diabetic feet, 

specifically focusing on DL techniques to enhance their accuracy in detecting the disease. 

 This study also suggests future research directions by highlighting the research gaps and challenges 

of existing studies. 

The paper is structured in the following manner: Section two provides an explanation of the classification 

systems, while sections three and four offer an overview of ML and DL, respectively. Section five presents 

performance parameters; section six presents relevant previous research conducted in this field; and section 

seven outlines the main new research directions. Lastly, section eight contains the conclusions. 

2|Machine Learning (ML) 

Traditional (shallow) ML plays a crucial role in automating medical diagnostics,  including the early detection 

of DF. By learning from handcrafted features in thermal or clinical images, ML algorithms can accurately 

classify foot conditions based on thermal or clinical images, thus improving patient outcomes and 

supporting medical decision-making [23]. 

2.1| Categories of Machine Learning 

ML approaches can be categorized into four broad groups; each serving distinct purposes in the realm of 

data analysis and decision-making. These are supervised, unsupervised, semi-supervised, and reinforcement 

learning [23], as shown in Table 1.  

Table 1: Machine Learning Approaches in DF Detection. 
Shallow Type Definition Applications in DF detection 

Supervised 

[24] 

Uses labeled datasets to train models that predict 

outcomes based on input features. 

Classifying thermogram images as ulcer-

prone or healthy. 

Unsupervised  

[25] 

Analyzes unlabeled data to identify patterns or 

clusters. 

Grouping foot images based on hidden 

patterns in temperature. 

Semi-supervised [26] Combines a small amount of labeled data with a 

large set of unlabeled data. 

Enhancing model accuracy using a few 

labeled foot images. 

Reinforcement [27] Trains models through reward-based learning in 

dynamic environments. 

Optimizing pressure-relief treatment plans 

via interactive feedback. 

 

2.2| Machine Learning Techniques 

The common ML techniques include decision trees (DT), logistic regression (LR), support vector machines 

(SVM), K-nearest neighbor (KNN), Naive Bayes (NB) [28]. The following section outlines commonly 

applied ML techniques in DF classification. 

 Decision Trees (DT): Decision Trees split data based on features to form branches leading to 

classification outcomes. In diabetic foot studies, DTs can identify key risk indicators like skin 

temperature or previous ulcer history [29-31]. 
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 Support Vector Machines (SVM): SVMs create optimal boundaries between classes in high-

dimensional data. For DF diagnosis, SVMs are used to distinguish between affected and unaffected 

thermographic patterns [32-34]. 

 K-Nearest Neighbor (KNN): KNN classifies new instances based on the majority label of the 

closest examples. In DF, it can compare foot images to known ulcer cases to determine risk levels 

[35-36]. 

 Logistic Regression (LR): LR estimates the probability of an outcome (e.g., presence of DF) 

using a logistic function. It is effective when features such as BMI, glucose levels, and image-based 

scores are available [37-38]. 

 Naïve Bayes (NB): NB classifiers use probabilistic reasoning based on Bayes’ theorem. It’s useful 

in binary classification, such as determining whether a patient is likely or unlikely to develop ulcers 

based on symptom presence [39-40]. 

3|Deep Learning (DL) 

DL is a branch of ML that employs multiple layers to extract both high-level and low-level data from inputs 

such as images, numerical values, and categorical values. As shown in Figure 1, DL differs from ML in that 

DL combines feature extraction and classification into a single layer, whereas ML uses separate layers for 

these processes. These days, artificial neural networks (ANNs), multi-layer perceptrons (MLPs), recurrent 

neural networks (RNNs), convolutional neural networks (CNNs), generative adversarial networks (GANs), 

transformers, autoencoders, and deep Q networks are used to build most DL models. These models can be 

combined with other DL models such as generative models, deep belief networks, and the Boltzmann 

machine [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The difference between ML and DL [42].  

Each level of DL captures new features and transforms the data to the next level. For example, in face 

recognition applications, the initial layers detect edges, then the subsequent layers identify features such as 

noses and eyes, while the third layer recognizes the entire face. Over the years, DL has shown immense 

potential in medical fields such as pathology, radiology, and thermography for disease diagnosis. It also has 

practical applications in analyzing molecular states and determining disease progression or therapy 

sensitivity, areas often overlooked by human investigation [43].  

There are several types of neural networks that form the foundation for most pre-trained models in DL: 

3.1|Artificial Neural Networks (ANNs) 

An ANN is a computational model that mimics the function of nerve cells in the human brain. It utilizes 

learning algorithms that allow it to adapt, perceive, and acquire knowledge independently, including MLPs, 



Computer-Aided Detection of Diabetic Foot via Infrared Imaging Using Machine and Deep Learning 

 

731    

RNNs, and basic feedback models. Consequently, it is a valuable instrument for simulating non-linear 

statistical data [44]. 

One of the primary advantages of an ANN is its ability to learn by observing datasets, making them 

effective for approximating functions and distributions to find optimal solutions [44]. ANNs store data 

across the entire network, can function with limited information, and have the numerical strength to 

perform multiple tasks simultaneously. However, large neural networks require significant processing time 

[45]. 

3.1.1| Multi-Layer Perceptron (MLP) 

Multiple layers of neurons, or nodes, connected in a feed-forward manner make up an MLP, a type of 

ANN. We use it for supervised learning tasks like classification and regression. It consists of an input layer, 

one or more hidden layers, and an output layer. Each layer connects neurons with weights that indicate the 

strength of these connections. The input layer receives data and passes it to the hidden layers, which process 

the data using activation functions such as sigmoid or Rectified Linear Unit (ReLU). The output layer 

produces a result based on the inputs it has received from the hidden layers [46]. Backpropagation trains 

MLPs, adjusting weights based on training errors to enhance performance. Applications such as image 

recognition, natural language processing, and time series forecasting utilize them [47]. 

3.1.2| Recurrent Neural Networks (RNNs) 

An RNN contains loops that the network uses to store information. In other words, RNNs use their 

reasoning based on past experiences to predict future events. Machine translation is a typical use of RNNs 

[48]. 

The RNN applies identical actions to all inputs and hidden layers, resulting in an output that employs the 

same parameters for each input. This approach reduces the complexity of the parameter set compared to 

other neural networks. The drawbacks of RNN are that it performs slow and complex training operations, 

making it difficult to process longer sequences [49]. 

3.2|Advanced Deep Learning Models 

We will discuss the most advanced models, including CNNs, GANs, Transformers, Autoencoders, and 

Deep Q Networks (DQNs), in this section. These models represent the advanced and specialized aspects of 

DL, including tasks such as image recognition, generative modeling, and reinforcement learning. 

3.2.1| Convolution Neural Networks (CNNs) 

CNNs specialize in handling structured data sets such as image arrays and are highly effective for visual 

tasks such as image classification, object detection, and segmentation [50]. Additionally, it has experience 

using natural language processing to categorize texts. The patterns in the input image, such as lines, 

gradients, circles, or even eyes and faces, are very well recognized by CNNs. CNNs do not require any prior 

image processing, in contrast to older computer vision algorithms. Image analysis applications such as 

segmentation, object detection, and image recognition primarily utilize CNN [51]. The CNN structure 

consists of three components: input, hidden layers, and output, with the number of hidden layers varying 

depending on the design. Hidden layers serve as intermediate levels in feedforward networks [52]. Figure 2 

illustrates the general architecture of a CNN model. 
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Figure 2. The general architecture of a CNN model. 

Since their introduction in 1989, many CNN models have excelled in disease diagnosis over the past 30 

years. Figure 3 shows the most commonly used CNN models.  

A CNN consists of convolution layers, pooling layers, and fully connected layers. Its goal is to acquire 

spatial hierarchies of features using a backpropagation algorithm autonomously and adaptively [53]. CNN 

contains hidden layers and convolutional layers, which form the foundation of ConvNets. The 

convolutional layer receives the input volume and performs a mathematical scalar product with the feature 

array (filter), producing feature maps as output [54].  

Employing CNNs has many advantages: CNN's weight-sharing capability reduces the number of trainable 

parameters, improving generalization and preventing overfitting. By learning feature extraction and 

classification layers together, CNNs produce highly organized outputs based on extracted features. They are 

easier to implement on a large scale compared to other neural networks, and they excel at image 

classification. On the other hand, CNN does not encode the position and orientation of an object [55]. 

 

Figure 3. Widely used CNN models. 

 

3.2.2| Generative Adversarial Networks (GANs) 

GANs, introduced in 2014 by Ian Goodfellow and colleagues, are advanced DL models aiming to generate 

high-quality synthetic data derived from real data. This is achieved through a distinctive training method 

involving two neural networks: the generator and the discriminator. The generator produces synthetic data 

from random noise, and the discriminator distinguishes between real and synthetic data. Through iterative 

training, the generator improves the realism of its data, while the discriminator becomes better at identifying 

fake data [56]. 

Throughout training, the discriminator improves its ability to differentiate between real and synthetic data, 

creating a feedback loop. Enhancements in the generator prompt adaptations in the discriminator and vice 

versa, resulting in continuous improvement for both producing realistic data and accurately classifying 

samples [57–58]. 
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3.2.3| Transformer 

Transformer is a unique DL infrastructure that executes tasks sequentially. Many fields, including computer 

vision and speech processing, use it. This is due to its efficiency in managing large data sets and long-term 

dependencies [59]. 

Key features empower the Transformer's performance, with the self-attention mechanism being central. It 

evaluates word importance in sequence, capturing relationships regardless of position. Multi-head attention 

enhances this by using multiple heads simultaneously, each learning distinct weights. To address the lack of 

positional information, positional encoding provides sequential order details. The encoder-decoder 

architecture includes multiple layers, with sub-layers featuring multi-head self-attention and position-wise 

feedforward networks. Layer normalization and residual connections ensure stable training. Each layer is 

equipped with an independent feedforward network that operates on each sequence position. Attention 

masks are used during training to keep track of positional information, and the model tries to reduce task-

specific losses like cross-entropy for machine translation. This makes it better at handling complex 

sequential relationships [60]. 

3.2.4| Autoencoders 

Autoencoders, pivotal in unsupervised learning, are essential for tasks of dimensionality reduction, feature 

learning, and generative modeling. These neural networks create a concise representation of input data by 

encoding it into a lower-dimensional space. Autoencoders, pivotal in unsupervised learning, are essential for 

tasks of dimensionality reduction, feature learning, and generative modeling. They work by encoding input 

data into a lower-dimensional space, then reconstructing it. Autoencoders include key components: an 

encoder, a decoder, and a latent space representing condensed input information. The goal during training is 

to minimize the difference between the original and reconstructed data, typically using mean squared error 

(MSE). Training involves encoding the input, decoding it, and updating model parameters through 

backpropagation with optimization techniques like stochastic gradient descent (SGD) [61]. 

Standard autoencoders have problems like overfitting, not regularizing enough, not being able to manage 

sparse or noisy input well, not being able to control the latent space, and deterministic encoding. There are 

several types of autoencoders available: contractive autoencoders with regularization, sparse autoencoders 

that promote sparsity, incomplete autoencoders for data compression, and denoising autoencoders that 

remove noise from images. These problems can be solved by variational autoencoders (VAEs), which show 

hidden characteristics as a probability distribution over a continuous latent space that makes sampling easier 

[62-63]. 

3.2.5| Deep Q Networks (DQNs) 

DQNs, a robust paradigm in reinforcement learning, excel in scenarios where an agent interacts with an 

environment to maximize cumulative rewards. Key components include Q-Learning, experience replacing 

for stability and sample efficiency, and periodic updates of the target Q-network. Epsilon-Greedy 

Exploration balances exploration and exploitation. The training process initializes the Q-network, includes 

agent-environment interaction, stores experiences, and iteratively updates the Q-network until convergence 

[64]. The way DQN combines Q-learning, experience replay, target Q-networks, epsilon-greedy exploration, 

and deep neural networks (DNNs) makes it possible for reinforcement learning to work well and stay stable 

in complicated settings[65]. 

4|Performance Parameters 

Performance parameters are essential in diabetic foot (DF) detection systems to assess the model’s 

diagnostic capability. These metrics ensure that automated systems can accurately distinguish between at-risk 

patients and healthy individuals, thus improving clinical outcomes [66]. 
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Accuracy =
TP + TN

TP + TN+ FP + FN
 

(1) 

Sensitivity =
TP

TP + FN
 

(2) 

Specificity =
TN

TN + FP
 

(3) 

Precision =
TP

TP + FP
 

(4) 

F1-Score = 2 ×
Precision × Recall

Precision + Recall
 

(5) 

AUC-ROC = ∫ TPR(FPR) dFPR
1

0

 
(6) 

 

Where: 

 TP: True Positives (accurately identified DF cases). 

 TN: True Negatives (accurately identified cases of non-DF). 

 FP: False Positives (misidentified DF cases). 

 FN: False Negatives (missed DF cases) [67]. 

Accuracy measures the proportion of true results (both true positives and true negatives) among the total 

number of cases analyzed. Sensitivity, or recall, measures the ratio of true positives accurately detected by 

the model. Specificity determines how accurately the model identifies actual negatives. Precision measures 

the proportion of positive identifications that are actually correct. The AUC-ROC measures the ability of 

the model to distinguish between classes. A higher AUC indicates better performance [68]. 

These parameters are crucial in the medical field, particularly in diabetic foot diagnosis, where missing a true 

case (false negative) could lead to serious complications such as infection or amputation. Therefore, 

sensitivity is often prioritized to ensure that all potential positive cases are detected. However, high 

sensitivity without sufficient specificity may lead to false alarms, increasing patient stress and unnecessary 

interventions. 

While accuracy is a commonly reported metric, it can be misleading when the dataset is imbalanced—a 

common issue in medical datasets where the number of healthy cases may greatly outnumber the diseased 

ones. In such cases, the F1-score, which balances precision and recall, provides a more meaningful 

evaluation. Similarly, AUC-ROC is particularly useful for comparing models across different thresholds, 

making it an excellent tool for understanding overall classification performance. 

In summary, no single parameter is sufficient on its own. A combination of these indicators offers a more 

comprehensive and reliable assessment of model performance, ensuring clinical decisions are both accurate 

and safe. 

Among the reviewed studies, F1-score and AUC are often prioritized due to the imbalanced nature of most 

medical datasets, especially in DF diagnosis. Although accuracy is widely reported, it is not sufficient alone. 

Sensitivity is crucial in minimizing the risk of missing critical DF cases, while specificity ensures accurate 

exclusion of non-cases. A combined evaluation across these metrics yields a comprehensive understanding 

of the model’s diagnostic power. 

5| Diabetic Foot Relevant Research 

This review encompasses studies published between 2018 and 2025, retrieved from major scientific 

databases such as IEEE Xplore, PubMed, and Google Scholar. The selected literature primarily focuses on 

the application of thermographic imaging and AI techniques, particularly ML and DL, for the detection and 

classification of DF complications. 
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Over the past few years, considerable research has been devoted to developing automated DF detection 

systems using AI-driven medical image analysis. This section critically examines the most influential 

contributions within this domain, categorizing them into two primary methodological approaches: shallow 

learning and deep learning. 

Each study is assessed based on its objectives, data sources, sample characteristics, algorithms used, 

performance metrics, and clinical relevance. The goal is to trace the evolution of diagnostic models, 

highlight performance trends, and identify current limitations to guide future research efforts. 

The section is structured as follows: Subsection 5.1 presents studies based on shallow learning models such 

as SVM, DT, and Random Forests (RF), while Subsection 5.2 explores advanced DL architectures including 

CNNs, RNNs, GANs, and Transformer-based models. 

5.1| Shallow learning Techniques 

There have been a few studies in recent years on the use of ML for the detection and prognosis of diabetic 

foot ulcers (DFUs). F. Khan et al. [69] used a new ML approach that integrated reinforcement learning to 

enhance the analysis of DFU images, obtaining a classification accuracy of 92.5% and a remarkable 

efficiency gain of 78.45% in comparison to conventional methods. Sh. Hong et al. [70] concentrated on 

predicting DFU recurrence using the patient's risk factors; the highest accuracy rate obtained in the study 

was (93%) reported by the SVM model. However, the study suffers from a lack of dataset size and small 

feature variety in terms of features. 

M. Alzyoud et al. [71] considered several classifiers and feature selection techniques on two datasets (DRD 

[72] and HCUP [73]), and indicated that the performance of the classifiers depend on the type of data used 

(Bayes Net [74], NB, Star [75], Multi Class Classifier [76], RF, Simple Logistic [77]). S. Stefanopoulos et al. 

[78] used CTREE and random forest models in order to predict the risk of major amputation in DFU, 

emphasizing gangrene and systemic infection as significant predictors. N. Arteaga-Marrero et al. [80] trained 

SVM classifiers based on thermographic data from the STANDUP [81], INAOE [82], and local [83] 

datasets, showing F1-scores of up to 90.27%. V. Filipe et al. [84] proposed two ML models to classify 

thermograms among diabetic severity stages, where Model 2 attained an accuracy of 93.2% . R. Alfkey et al. 

[85] used CNN (VGG-19) and PCA for feature representation and VGG-19 CNN [86], gradient boosting 

classifier [87], XGBoost [88], and RF for classification and achieved accuracy greater than 94%. Similarly, S. 

Kumar et al. [89] used several ML algorithms to test PIMA dataset [90] where logistic regression turned out 

with 80% accuracy. 

Other studies have investigated image-based detection approaches. A. R. Naidu et al. [91] used MATLAB 

[92] for thermal image analysis, which allows non-contact acquisition of DF-related variations. J. Guzaitis et 

al. [93] published a smartphone-based screening model [94] that employed thermal imaging and edge 

detection to achieve more than 94% accuracy in the detection of inflammation. To assess the performance 

of an ML-based scoring scheme in identifying DF A. Khandakar et al. [95] applied the Synthetic Minority 

Oversampling Technique (SMOTE) [96]. CNNs and ML classifiers were benchmarked with dual-foot 

thermograms and image enhancement methods, and MobileNetV2 and DenseNet201 achieved the best 

balanced performances. Lastly, J. Saminathan et al. [97] experimented with thermal and color images from a 

FLIR E50 thermal imaging camera [98]. They developed a textured-temperature-based algorithm for the 

early detection of ulcer-prone regions with a detection accuracy of 95.61%. 

Table 3. Summary of key studies investigating diabetic DF detection using various shallow machine learning 

ML techniques. The table outlines essential aspects, including the study aims, dataset types and sources, 

number of patients and images, methods employed, reported remarks. 
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This subsection reviews key shallow learning models applied in DF detection. As shown in Table 3, studies 

employed techniques such SVM, DT, RF, and LR. Most studies relied on thermal imaging or structured 

clinical data, with datasets ranging in size and quality. While some achieved high accuracy (e.g., Alfkey et al. 

at 95.08%), many lacked real-world validation or suffered from small sample sizes. These limitations suggest 

the need for broader datasets and external validation for future applications. 

Table 4 presents the performance evaluation metrics used across the reviewed studies. It highlights the 

diagnostic strength of each approach in terms of accuracy, sensitivity, specificity, precision, recall, F1-score, 

and AUC, providing a comparative overview of model effectiveness in detecting diabetic foot 

complications. 

Table 4. Performance evaluation of ML approaches of detecting diabetic foot. 

Ref Accuracy Sensitivity Specificity Precision Recall F1-score ROC-AUC 

[69] 92.5% 71–98.2% N/A N/A N/A N/A N/A 

[70] 93% 92% N/A 92% 92% N/A N/A 

[71] N/A N/A N/A N/A N/A N/A N/A 

[78] 77.7% 76.1% 79.3% N/A N/A N/A N/A 

[80] N/A N/A N/A N/A N/A 90.27% N/A 

[84] 93.2% 86.9% 95.4% N/A N/A 86.7% N/A 

[85] 95.08% 95.08% 95.09% 97.2% N/A 95.08% N/A 

[89] 80% N/A N/A N/A N/A N/A 68% 

[91] N/A N/A N/A N/A N/A N/A N/A 

[93] 94.28% N/A N/A N/A N/A N/A N/A 

[95] N/A 95.71% N/A N/A N/A N/A N/A 

[97] 95.61% N/A N/A N/A N/A N/A N/A 

 

By organizing the findings in tabular format, this section enables a direct comparison of Ml techniques, 

datasets, and performance outcomes, providing a foundation for identifying future research directions. 

In summary, the reviewed shallow learning studies show promising results in DF detection, especially when 

using well-known classifiers like SVM and Random Forest. However, limitations such as small sample sizes, 

lack of external validation, and computational complexity persist. Future research should focus on 

integrating these models into real-time clinical workflows and expanding datasets for better generalization. 

5.2| DL Techniques 

Current studies includes various DL-based methods for DFU detection, diagnosis, and risk assessment. P. 

L. Li et al. [99] introduced a novel deep learning framework based on DiffusionNet with integrated self-

attention and anatomical features, with an accuracy of 82.9%, that outperforms the baseline models and 

used on a 3D foot scan dataset acquired from an EinScan Pro HD [100]. Similarly, V. Panamint et al. [102] 

used ResNet50V2 with plantar thermography, obtaining an accuracy of 71.8% and the potential of 

screening, with low amount of data and the integration of clinical variables. 

L. Z. Chee et al. employed wearable sensor data. [103] inserted an approach combining CNN and LSTM 

models, which was 91:25% accurate but depended on the acceleration of walking. A. M. El-Kady et al. 

improved DFU detection with application of ResNet50 in pair with GANs of 84% diagnostic accuracy but 

lacked transparency of used datasets [104]. 

Gulshan and Arora [105] employed thermal imaging and a CNN-RNN pipeline, achieving 97.14% accuracy 

but without comparative baselines and validation. However, M. H. Alshayeji et al. [106] employed classic 

feature extractions (SIFT [107], SURF [108], BOF [109]) with SVM classification, achieving an accuracy of 

97.81% but missed contemporary DL lifting. 
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R. N. Yousef et al. [110] presented a CNN-FS technique for the thermal image analysis with the accuracy of 

99.3%, J. Reyes-Luévano et al. [111] introduced a new approach, DFU VIRNet, using estimated maps [112] 

trained on multimodal data, with AUC scores of over 0.99 for DFU and ischemia detection. N. Sharma et al. 

[113] used thermal-visual HSV image fusion blended with mask-RCNN segmentation to get the 92.5% 

agreement with the clinical evaluations. 

Advanced models like vision transformers were also studied by H. Shao [114] achieved an accuracy of up to 

99%, although the evaluation benchmarks were insufficient. Sh. Sh. Reddy et al. [115] performed a 

comparison of DL architectures and VGG16 managed an accuracy of 99.51% but with little information on 

its architecture. Similarly, M. Ahsan et al. [116] tested multiple CNNs on DFU2020 and found that 

ResNet50 achieved the highest precision in ischemia. 

A. Hernandez-Guedes et al. [117] used variational dropout and SMOTE-boosted thermograms with 90% 

F1-score. P. N. Thotad et al. [118].They employed EfficientNet [119] and obtained an accuracy of 98.97% 

for DFU detection. V. Khullar et al. [120] reported better performance of the Inception ResNet V2 

compared to conventional ML-based methods to classify DF from thermograms. 

I. Khosa et al. [121], who achieved greater accuracy through custom CNN models on patch-level and full 

thermograms. M. Ray et al. [122] used asymmetric analysis [123] and Inception ResNet V2 on thermal 

images to drive mobile dependent DFU detection. Kh. Munadi et al. [124] presented a lightweight 

MobileNetV2–ShuffleNet fusion architecture, which attained 100% with classification rate. 

Sh. Muralidhara et al. [125], that takes advantage of deep learning models for ulcer classification with a 

multi-class differentiation task improving significantly the ulcer grading by obtaining an accuracy of 0.9827. 

A. Anaya-Isaza et al. [126] suggested a temperature classification index (TCI) to categorize subjects based 

on temperature variation according to the following equation: (7) and more sophisticated augmentation 

techniques: 100% of detection. 

   TCI = T⋅A2

TCIR+TCIL
 (7) 

  where: 

 T is the average temperature of both feet. 

 A is the subject's age.  

 The TCIR and TCIL are the thermal change indices for the right and left feet, respectively. 

H. Maldonado et al. [127], has two cameras — Venice extension system (VS) camera [129] and IR thermo-

camera [130] — on both feet forming the dual focus shot, and processes the acquired image automatically to 

detect necroses or sores. They combined Mask R-CNN  VD[128] with dual-view thermal imaging for a 

mobile DFU detection system[131]. S. Assistant et al. [132] improved image pre-processing and thermal 

analysis through clustering [133], threshold [134], compression-based [135], and watershed transformation 

[136] with CNNs but without specific results. A. Bougrine et al. [137] used the U-Net [138] for thermal 

image segmentation and risk assessment which was demonstrated during a prospective clinical study on 122 

patients in de Mayo National Hospital [139]. L. Alzubaidi et al. [140], where DFU_QUTNet was proposed 

using DAG model [141]. DFU_QUTNet  was composed of input layers with three channels. All channels  

were of size 224 × 224 pixels. The processing of the convolutional layer through the previous layer involved 

convolution with a learnable filter set, batch normalization (BN) [142], rectified linear unit (ReLU) [143], 

addition, average pooling, dropout, and fully connected (FC) layers [144]. The features were extracted by the 

DFU_QUTNet network to train the SVM and KNN classifiers. For comparison, it reached a 94.5% f1-

score, which was higher than the other CNNs. 

M. Goyal et al. [145] used EfficientDet on augmented DFU images and achieved high accuracy without 

performance numbers. M. Kayalvizhi et al. [146] also suggested CNN+SVM hybrid models which obtained 

97.9%Classification Accuracy. Finally, Cruz-Vega et al. [147] presented a DFTNet model that employed 

Fourier transform-based feature extraction and achieved better performance than AlexNet or GoogleNet, 
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with a sensitivity of up to 95.34%; however, the sample size was restricted in terms of a multi-level classifier. 

M. Goyal et al. [148] also reported DFUNet as a CNN for accurate DFU classification (AUC = 0.961) with 

promising potential for automated diagnosis and clinical use. 

DL techniques, particularly CNNs, have shown remarkable performance in the automatic detection of DF  

complications. Despite this, several challenges persist, including limited annotated data, high computational 

requirements, and a lack of model transparency. Emerging studies highlight the benefit of combining DL 

architectures with preprocessing methods and ensemble learning strategies to improve diagnostic accuracy 

and robustness. 

Table 5. Comparative summary of key studies employing DL techniques for DF detection. The table 

outlines the study aims, dataset characteristics, DL models applied, and reported limitations, providing 

insights into current approaches and challenges in DF diagnostic automation. 

In summary, DL models have achieved high accuracy across various datasets and imaging modalities. 

However, the generalizability of these models remains constrained by dataset imbalance, lack of clinical 

context, and interpretability issues. While architectures such as ResNet, VGG, and EfficientNet dominate 

the field, hybrid approaches and attention-based models are emerging as powerful alternatives. There 

remains a clear need for standardized datasets, longitudinal clinical validation, and explainable DL systems to 

support clinical adoption. 

Table 6. Overview of performance evaluation metrics reported in DL-based studies for diabetic foot 

detection. Metrics include accuracy, sensitivity, specificity, precision, F1-score, and ROC-AUC, enabling 

comparison of diagnostic effectiveness across different models. 
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Table 6. Performance evaluation of DL approaches of detecting diabetic foot. 

Ref Accuracy Sensitivity Specificity Precision F1-score ROC-AUC 

[99] 82.9% N/A N/A N/A N/A N/A 

[102] 71.8% 81.2% 64.0% N/A N/A N/A 

[103] 91.25% N/A N/A N/A N/A N/A 

[104] 84% N/A N/A 85% 0.84 N/A 

[105] 97.14% N/A N/A N/A N/A N/A 

[106] N/A N/A N/A 97.9% N/A 0.9995 

. [110] 99.3% N/A N/A N/A N/A N/A 

[111] N/A N/A N/A N/A 0.9600 0.9923 

[113] 92.5% N/A N/A N/A N/A N/A 

[114] 99% N/A N/A N/A N/A N/A 

[115] 99.51% N/A N/A N/A N/A N/A 

[116] N/A N/A N/A 99.49% N/A N/A 

[117] N/A N/A N/A N/A 0.90 N/A 

[118] 99% N/A N/A N/A 98% N/A 

[120] N/A N/A N/A N/A N/A N/A 

[121] N/A N/A N/A N/A N/A N/A 

[122] N/A N/A N/A N/A N/A N/A 

[124] 100% N/A N/A N/A N/A N/A 

[125] 98.27% 96.84% 98.92% N/A N/A N/A 

[126] 100% N/A N/A N/A N/A N/A 

[127] 90% (ulcers) N/A N/A N/A N/A N/A 

[132] N/A N/A N/A N/A N/A N/A 

[137] N/A N/A N/A N/A N/A N/A 

[140] N/A N/A N/A N/A 0.945 N/A 

[145] N/A N/A N/A N/A N/A N/A 

[146] 97.9% 93.6% N/A N/A N/A N/A 

[147] 94.53% 95.34% 93.75% N/A N/A N/A 

[148] N/A N/A N/A N/A N/A 0.961 

 

6| The Main New Directions of Research in The Detection of DF 

6.1| Directions In Image Acquisition 

X-rays have traditionally been used to detect DF, but other imaging systems have also been used. For 

example, infrared columns, ultrasound, magnetic resonance imaging, anatomy, and thermography have been 

used to obtain more accurate information. 

Recent studies are increasingly exploring infrared technology for medical imaging due to its non-invasive 

nature and absence of radiation, which enhances safety in diagnosis. Moreover, it is more accurate and can 

detect subtle temperature changes that may indicate the presence of a disease. Additionally, the combination 

of thermography, a non-invasive technique, and advanced molecular analysis has shown promising results in 

the early detection of diabetes. More research is expected to take place using infrared thermal images. 

6.2| Future Directions in ML and DL 

This research compilation from 2018 to 2025 examined diverse methodologies for diagnosing and 

classifying DFUs through thermal imaging techniques. For the accurate and timely detection of DFUs, the 

reviewed studies have used CNNs, hybrid models, and traditional ML models, which led to significant 

advancements. These methods concentrate on augmenting accuracy in DFU detection through the 

optimization of model architecture, the advancement of algorithms, and the enhancement of dataset quality. 

DL models, including EfficientNet and DFU_QUTNet, and hybrid approaches such as CNN-LSTM 

demonstrate significant efficacy in the analysis of small medical image datasets.  
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Using methods like data augmentation and transfer learning, along with adding local thermograms and 

creating synthetic data, has improved model performance by making up for the lack of data. Furthermore, 

multi-level image analysis that emphasizes both image-level and patch-level thermogram data has arisen as 

an effective method for identifying DFUs. The integration of ML with DL through hybrid models like 

CNN-SVM has improved accuracy in early detection, leveraging DL's feature extraction and ML's decision-

making capabilities. Moreover, exploring variational DL techniques, including variational dropout, has been 

acknowledged as an effective strategy for improving model generalization and robustness in scenarios with 

constrained datasets. Lastly, the diversity and quality of datasets remain pivotal, with studies emphasizing the 

need for balanced datasets to avoid biases and enhance model performance across diverse populations. 

6.3| Directions in the Dataset 

We recommend that researchers employ recognized benchmark datasets, such as those available in TREC 

[149], in IR research (information retrieval), emphasizing the significance of embracing a shared and widely 

acknowledged framework for evaluating algorithms. This approach fosters transparency, facilitates fair 

comparisons, and drives advancements in the field through collaborative endeavors. Encouraging 

researchers to adhere to these standards is crucial for making meaningful contributions to the broader 

scientific community. 

7| Clinical Implications and Deployment Challenges  

However, despite the significant potential offered by recently developed ML and DL models for the 

automatic detection and categorization of DF complications, their practical clinical implementation is 

scarce. Although many  studies have reported high diagnostic performance in terms of accuracy, sensitivity, 

and specificity, few have been validated in real-world clinical settings, including hospitals and telemedicine 

sites. This raises serious concerns about  the generalizability, stability, and clinical readiness of such models 

in different patient populations and hospital contexts. 

There are several bottlenecks to deploying AI-based diagnostic systems in clinical practice. 

 Variability of Data: Most models are developed from limited or homogeneous datasets and cannot  

fully capture age differences, skin tone variations, ulcer stages, and/or comorbidity. This limits the 

generalizability of the model to a larger patient pool. 

 Workflow Integration: For AI tools to be successfully integrated into clinical workflows, they must 

integrate seamlessly with HISs, possess user-friendly interfaces for medical personnel, and comply 

with data privacy laws and regulations. 

 Model Interpretability and Clinical Trust: Most DL models are “black boxes” and provide  little 

insight into the reasoning behind decisions. However, it lacks visual explanations or interpretable 

outputs (e.g., heatmaps), which may lower clinician trust and limit its applications. 

 Resource constraints: The computational requirements of DL models can be a bottleneck in 

environments where resources are scarce, such as rural or underprivileged areas. One such challenge 

is the development of lightweight, mobile-friendly models. 

To overcome these pitfalls, future research should focus on the following strategies: 

 Conducting multicenter clinical trials to validate model performance in various healthcare 

environments and patient populations. 

 Developing models that are efficient and lightweight to perform in real time on mobile or 

embedded devices to increase accessibility in low-resource settings. 
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 Promoting interdisciplinary research: AI researchers and physicians might work together to explore 

whether model outputs match clinicians' requirements and  clinical jargon. 

 In addition to algorithmic performance, successful clinical adoption of AI-powered DF detection 

systems relies on practicality, acceptance by clinicians, and patient safety. There is a need to narrow 

the gap between research and clinical practice to accomplish real progress in early detection, early 

intervention, and patient survival. 

8| Conclusions 

In this study, we provide an up-to-date review of the state-of-the-art techniques for diabetic foot (DF) 

detection using infrared thermal imaging and machine learning (ML) and deep learning (DL) methods. It 

systematically investigates 40+ studies regarding techniques, datasets, and criteria published from 2018 to 

2025. Important challenges, such as data imbalance, absence of dataset standardization, small clinical 

validation, and applicability of the findings in a real-world scenario, are deeply analyzed. The conclusions of 

this study provide directions for further research to improve diagnostic accuracy in the transition from 

animal models to the realization of AI-based diabetic foot screening tools in the clinic. 

Recent advances in ML and DL techniques have notably enhanced the performance of computer-aided 

diagnostic systems, particularly in medical image analysis. Traditional ML models, such as SVM and LR, 

have shown good performance when combined with feature selection methods, such as Gini impurity and 

information gain. In addition, CNN networks (ResNet, DenseNet, VGG16/19) and custom models 

(DFUNet, etc.) were also found to perform well in detecting DFUs from thermal images. Hybrid models 

that combine CNN with LSTM or SVM classifiers exploit both temporal and spatial features, achieving 

better results. 

Furthermore, data augmentation methods, including SMOTE, and regularization approaches, such as L1 

and L2, are utilized to combat overfitting and improve generalization, especially when applied to small and 

imbalanced datasets. Advanced DL-based methods, such as EfficientDet and Vision Transformers, are also 

gaining strength in challenging medical imaging tasks. Cross-validation is a fundamental step in model 

evaluation,  as it contributes to increasing robustness and reproducibility. Overall, the amalgamation of 

these AI-driven tools has great promise in augmenting early DF detection, ultimately enhancing patient 

prognosis and reducing the economic burden on healthcare services. 
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Appendix 

 ATD Absolute Temperature Difference LPA Leteral planter Artery 
AUC Area Under the Curve MCA Medial Callcaneal Artery 
BN Batch Normalization MPA Medial planter Artery 
CAD Computer Aided Detection MRI Magnetic Resonance Imaging 
DF Diabetic Foot PCA Principal Component Analysis 

DME Diabetic Macular Edoema QDA Quadratic Discriminant Analysis 
GNA Gaussian Naive Bayes RELU Rectified Linear Unit 
IRT Infrared Thermography ROI Region Of Interest 
LCA Leteral Callcaneal Artery TCI Thermal Change Index 
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