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1 |Introduction 

The domain of knowledge discovery has consistently confronted the essential challenge of differentiating 

significant patterns from noise within extensive datasets. Although conventional pattern mining 

methodologies are proficient in identifying frequent item sets and association rules, they frequently inundate 

analysts with numerous apparent or trivial patterns that contribute minimal actionable insights. Knowledge 

discovery in databases (KDDs), commonly referred to as data mining (DM), is characterized as the non-

trivial endeavor of uncovering valid, novel, potentially useful, and ultimately comprehensible patterns from 
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The discovery of  unexpected patterns represents a critical advancement in knowledge discovery, enabling the 

identification of  rare yet meaningful contradictions that defy conventional frequency-based assumptions. 

However, existing techniques frequently suffer from three major limitations: (1) rigidity in adapting to evolving 

data distributions, (2) limited capacity to interpret semantic relationships among patterns, and (3) dependency on 

extensive manual tuning for parameter optimization. To overcome these challenges, this paper introduces the 

Adaptive Multi-Modal Framework for Unexpected Pattern Discovery (AMFUP), a comprehensive architecture 

that enhances adaptability, semantic understanding, and automation in pattern mining. AMFUP integrates three 

synergistic components: the Multi-Modal Pattern Embedding (MMPE), which captures structural, semantic, and 

statistical dimensions of  patterns through neural architectures; the Dynamic Belief  Adaptation (DBA) module, 

which continuously evolves belief  systems in response to concept drift; and the Automated Parameter Learning 

(APL) mechanism, which employs meta-learning to optimize parameters without human intervention. 

Experimental results across eight datasets demonstrate that AMFUP achieves the highest Pattern Quality Score 

(PQS) of  0.96, representing a 28% improvement over the best baseline method (belief-driven). Concurrently, 

AMFUP establishes itself  as the fastest method with a runtime of  12 minutes, achieving a 73.3% reduction 

compared to UCRP-miner (45 min) and a 33.3% reduction compared to Random Forest (18 min). AMFUP 

achieves a 43.28% increase in PQS and a 46.68% reduction in execution runtime compared to the average 

performance of  baseline methods.  
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data [1]. Nonetheless, a substantial portion of the research within the field of knowledge discovery 

predominantly emphasizes the validity aspect, while the other two dimensions, namely novelty and 

usefulness, receive comparatively less attention [2, 3]. The identification of unexpected patterns signifies a 

transformative shift from frequency-driven mining methodologies to those centered on contradiction-based 

exploration. Unexpectedness constitutes one of the nine criteria proposed to assess the significance of a 

pattern in relation to a specific research inquiry [4]. The criterion of unexpectedness holds substantial 

importance, as it underscores the need to identify patterns that confront users' pre-existing beliefs or 

established knowledge [5]. Unlike conventional methods which concentrate on the detection of commonly 

occurring patterns, unexpected pattern mining seeks to reveal rare yet significant patterns that oppose 

established convictions or normative expectations concerning behavior [6]. Within the realm of healthcare, 

it is widely recognized that, patients undergoing treatment for hypertension benefit from improved control 

of their blood pressure levels. Nonetheless, an unexpected event may suggest that, patients who are 

administered hypertension medication alongside specific dietary supplements may present adverse reactions. 

Although such occurrences are rare, they hold considerable significance for both patient safety and 

treatment guidelines. Numerous practical applications necessitate the identification of unusual or 

unexpected patterns (rare patterns). For instance, the combination of diapers and beer is observed less 

frequently than that of milk and bread, yet it yields a greater profit margin compared to milk and bread [7]. 

Notwithstanding the considerable advancements in the discovery of unexpected patterns, current 

methodologies exhibit three fundamental limitations that significantly hinder their practical application. 

Firstly, the leading methods, such as UCRP-miner and clustering-based techniques, depend on fixed belief 

systems established from historical data snapshots [8, 9]. In an attempt to reduce the occurrence of 

redundant patterns and the consequent degradation in performance, researchers have proposed effective 

strategies designed to obtain a concise representation of patterns, referred to as closed rare patterns [8]. 

However, these static concepts do not possess the ability to adjust to changes in the fundamental data 

distributions, making them inappropriate for dynamic environments in which patterns evolve over time. 

Furthermore, traditional methods demand considerable manual adjustment of similarity thresholds, support 

values, and clustering parameters. For example, the DBSCAN algorithm, utilized for the identification of 

candidate unexpected rules, necessitates the specification of two parameters: minPts and eps [9]. The 

selection of these parameter values significantly influences the underlying belief system as well as the 

recognized outliers. Furthermore, conventional methodologies tend to focus exclusively on variations in 

lexical or structural patterns, thereby neglecting the semantic relationships that exist among these patterns 

[10, 11]. A fundamental representation of the feature vector associated with a rule may be a binary encoding 

that indicates either the absence or presence of elements contained within the rule [9]. Nevertheless, the 

distinction between two binary feature vectors solely pertains to the disparity in the lexical dimension. This 

constraint results in semantically analogous patterns being regarded as entirely disparate entities, thus 

diminishing the quality of discovery. In response to this challenge, we present the Adaptive Multi-Modal 

Framework for AMFUP, an innovative methodology that effectively addresses all three significant 

limitations through cohesive integration. AMFUP encompasses three interrelated components: Multi-Modal 

Pattern Embedding (MMPE), which is a neural architecture designed to identify patterns that exceed mere 

item co-occurrence by synthesizing structural, semantic, and statistical representations through specialized 

branches and attention-guided fusion; Dynamic Belief Adaptation (DBA), a self-modifying belief system 

that uniquely adjusts to shifting data patterns and integrates mechanisms for detecting concept drift along 

with adaptive evaluation of belief quality; and Automated Parameter Learning (APL), a meta-learning 

framework that alleviates the necessity for manual parameter tuning through multi-objective optimization, 

thus allowing for seamless adaptation across various datasets. This study contributes four significant 

advancements to the existing body of knowledge. Firstly, we introduce the first adaptive belief system 

capable of evolving in reaction to changing data patterns while maintaining theoretical assurances 

concerning pattern quality. Secondly, we present an innovative multi-modal embedding approach that 

clarifies semantic relationships between patterns, surpassing traditional lexical comparisons. Thirdly, we 

provide an automated parameter optimization framework that eliminates the need for manual configuration 
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specific to particular domains. Finally, we demonstrate improved performance across eight varied datasets, 

achieving a 43.28% increase in PQS and a 46.68% reduction in execution runtime compared to the average 

performance. The wider ramifications of this research go beyond simple enhancements in algorithms. The 

structure of the paper is as follows. Section 2 reviews related literature and pinpoints fundamental 

shortcomings in current methodologies. Section 3 delineates the AMFUP framework methodology, which 

encompasses mathematical formulation and algorithmic specifics. Section 4 presents experimental findings 

that indicate significant advancements over leading baseline models. Lastly, Section 5 concludes with an 

examination of limitations and suggestions for future research directions. 

2 |Related Work and Limitations Analysis 

The discovery of unexpected patterns has progressed through three principal methodological frameworks, 

each targeting distinct elements of the underlying challenge associated with recognizing patterns that deviate 

from established knowledge or conventional behavior expectations [3, 9].  

2.1 |Closed Pattern-based Methods 

The UCRP-miner framework [8] signifies a substantial advancement within the domain of closed pattern-

based unexpected pattern discovery, drawing upon the principles of closed frequent itemset mining 

algorithms [12]. This approach produces closed frequent patterns deemed as established beliefs, indicative 

of expected behavior, while closed rare patterns are identified as candidates for additional examination [13]. 

It employs cosine similarity metrics to evaluate the relationship between rare patterns and their frequent 

equivalents. Patterns that demonstrate a substantial degree of similarity to frequent patterns, coupled with a 

low support level, are classified as unexpected [14, 15]. This method has been shown to surpass clustering-

based techniques across a range of datasets [8]. Its theoretical underpinnings are rooted in traditional 

association rule mining [12] and frequent pattern mining algorithms [16, 17], thereby expanding their 

application to encompass rare pattern discovery. UCRP-miner encounters various notable limitations: (1) 

the beliefs it generates are static representations based on historical data, rendering them inadequate for 

addressing concept drift, (2) cosine similarity measures overlook the semantic interrelations among patterns, 

focusing exclusively on lexical overlaps, (3) the process of manually configuring thresholds for similarity and 

support parameters requires specialized knowledge within the domain, and (4) the approach fails to 

consider the temporal progression of pattern significance [8, 18].   

2.2 |Clustering-based Approaches 

Clustering-based methodologies, as demonstrated by DBSCAN [19] and the OPECUR frameworks [20], 

categorize association rules relying on distance metrics, where dense clusters signify prevailing beliefs 

(common patterns) and outliers indicate potentially unforeseen patterns. These methodologies utilize 

density-based clustering algorithms that are augmented with contradiction-checking functions to detect 

patterns that diverge from established cluster centroids [9, 20]. Recent developments in exception rule 

mining [14, 21] have investigated analogous clustering paradigms, aiming to identify rules that are in 

contradiction to standard patterns. Despite their theoretical merit, clustering-based methods possess 

inherent limitations: (1) a pronounced sensitivity to hyperparameters (eps, minPts) that directly influences 

the quality of the belief system [19], (2) binary feature encoding that inadequately captures logical 

relationships such as contradiction or semantic similarity [9],(3) the possibility of clustering unexpected 

patterns alongside normal ones, resulting in false negatives, and (4) suboptimal scalability in high-

dimensional pattern spaces, characterized by O(n²) computational complexity. 

2.3 |Belief-driven Methods 

The seminal contributions of Silberschatz and Tuzhilin [3] laid the theoretical foundation for the 

identification of unexpected patterns influenced by belief systems, elucidating unexpectedness through its 

effects on user cognition. This framework differentiates between hard beliefs, which impose rigid 
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constraints, and soft beliefs, which possess the capacity to adjust in response to new evidence. It employs 

probabilistic measures to quantify updates to these beliefs. In furtherance of this framework, Padmanabhan 

and Tuzhilin [5] introduced definitions grounded in logical contradictions, necessitating that domain experts 

manually delineate belief rules, as well as identify mining patterns that conflict with these beliefs, relying on 

statistical validation techniques. Other methodologies, such as Bayesian network approaches [13] and 

maximum entropy models [15], have been proposed to articulate prior knowledge and evaluate the 

unexpectedness of patterns. Liu et al. [6] advanced the concept of general impressions to facilitate user-

friendly belief specifications, while Piatetsky-Shapiro and Matheus [18] concentrated on deviation-based 

measures of interestingness. Nonetheless, belief-driven methodologies encounter several practical 

challenges: (1) substantial expertise in specific domains is mandatory for effective belief specification [5], (2) 

the rigidity of belief systems hinders adaptation to new data patterns, (3) the constraints imposed by logical 

contradictions fail to account for semantic interrelations, and (4) scalability issues arise across various 

domains due to the necessity for manual knowledge engineering. 

2.4 |Fundamental Research Gap 

Current methodologies tackle individual components of unexpected pattern discovery; however, they do 

not offer a cohesive framework capable of concurrently addressing: (1) adaptive belief evolution that adjusts 

to shifting data distributions, (2) semantic pattern comprehension that reflects meaning beyond mere lexical 

similarity, and (3) automated parameter optimization that obviates the need for manual tuning. Present 

strategies often depend on static belief frameworks [3, 5] or necessitate considerable manual adjustments [8-

9, 20], thereby constraining their practical utility in dynamic real-world contexts. The lack of multi-modal 

pattern representations that amalgamate structural, semantic, and statistical information constitutes a 

significant deficiency in the existing literature [9]. Conventional binary encodings and distance-based 

similarity metrics are insufficient for portraying the intricate relationships among patterns that are crucial for 

an accurate assessment of unexpectedness.  

3 |Methodology 

3.1 |Problem Formalization 

The issue of discovering unexpected patterns transcends conventional frequent pattern mining by 

emphasizing patterns that actively contradict existing knowledge rather than merely being rare. In the 

context of a transactional dataset, whereby each transaction encompasses a subset of items derived from a 

comprehensive item set, our objective is to identify association rules that contravene anticipated behavioral 

patterns while upholding statistical significance. The primary difficulty resides in differentiating between 

patterns that are merely uncommon and those that are genuinely unexpected. For instance, in a retail 

context, the belief that "professionals shop on weekends" is widely recognized. An infrequent occurrence, 

such as "professionals shop on Tuesday mornings," may simply indicate a lack of activity, whereas 

"professionals shop on weekdays during December" signifies a true contradiction that yields valuable 

insights. This differentiation constitutes the essence of our problem formulation.  

Definition 1 (Unexpected Pattern). A pattern 𝑃: 𝐴 → 𝐵 is unexpected with respect to belief ℬ: 𝑋 → 𝑌 if 

and only if: 

1. Logical Contradiction: 𝐵 ∧ 𝑌 - The consequents are mutually exclusive, ensuring genuine 

contradiction rather than mere difference. 

2. Antecedent Similarity: sim(𝐴, 𝑋) ≥ 𝜃𝑠𝑖𝑚 - The antecedents exhibit a level of similarity that renders 

the contradiction significant. 

3. Statistical Significance: Both supp(𝑃) ≥ 𝜎 and supp(ℬ) ≥ 𝜎 - Both the pattern and the belief are 

sufficiently backed by statistical evidence. 
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4. Intersection Requirement: |𝐷𝐴∩𝑋| ≥ 𝜎 ⋅ |𝐷| - A considerable degree of overlap is present between 

the contexts of patterns and beliefs. This definition builds upon the logical contradiction framework 

established by Padmanabhan and Tuzhilin [5] by incorporating similarity metrics and statistical criteria. 

This incorporation ensures practical applicability and mitigates the potential for trivial contradictions to 

arise. 

5. Optimization Objective: The primary aim entails harmonizing various conflicting objectives by means 

of a thorough optimization framework. 

maxΘ,𝑃 ℱ(𝑃, Θ) = 𝛼 ⋅ 𝑄(𝑃, Θ) − 𝛽 ⋅ 𝐶(𝑃, Θ) + 𝛾 ⋅ 𝐼(𝑃, Θ) + 𝛿 ⋅ 𝑅(𝑃, Θ) (1) 

where each component addresses critical practical requirements: 

 𝑄(𝑃, Θ): The quality of patterns entails various factors, including unexpectedness, actionability, and 

novelty. 

 𝐶(𝑃, Θ): Computational cost which include both runtime and memory constraints.  

 𝐼(𝑃, Θ):  Interpretability is crucial to guarantee that patterns are understandable . 

 𝑅(𝑃, Θ): Robustness measuring involves evaluating stability across different subsets of data. 

 Θ: parameter vector must encapsulate all elements of the system. 

 𝛼, 𝛽, 𝛾, 𝛿: application-specific weighting factors are also essential. 

3.2 |AMFUP Framework Architecture 

AMFUP proficiently addresses the fundamental limitations of existing methodologies by utilizing three 

interconnected components that operate within continuous feedback loops. Unlike static approaches like 

UCRP-miner, which rely on predetermined similarity thresholds and established belief systems, AMFUP 

adapts flexibly to the evolving characteristics of data while maintaining computational efficiency. The 

architectural framework establishes a complex information flow whereby advancements in one component 

contribute to and enhance the performance of the others, as demonstrated in Figure 1. This architecture has 

been adapted and expanded to facilitate the discovery of unexpected patterns, derived from the principles 

established in [5], [8], and [9]. The proposed AMFUP framework integrates novel components such as 

MMPE, DBA, and APL. AMFUP successfully addresses the fundamental limitations of existing approaches 

by utilizing three interconnected elements that operate within continuous feedback mechanisms. 
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Figure 1.  AMFUP framework architecture. 

 

Facilitation of Information Transmission: The unrefined transactional data is subjected to preliminary 

pattern extraction through the application of recognized algorithms (such as Apriori and FP-Growth) to 

produce candidate association rules. Subsequently, these candidates are processed by the MMPE 

component, which generates comprehensive, multi-dimensional representations that concurrently 

encapsulate structural, semantic, and statistical characteristics. The DBA component leverages these 

embeddings to sustain and refine the belief framework, discerning dense clusters as confirmed beliefs and 

sparse outliers as unanticipated pattern candidates. 

Backward Optimization Flow: APL module persistently evaluates the quality of patterns and the 

performance of the system, modifying parameters across all components via gradient-based and 

evolutionary optimization methodologies. This results in a self-enhancing system that progressively 

improves its performance over time without the need for manual intervention. 

Adaptive Feedback Mechanism: The framework integrates methodologies for identifying concept drift, 

which are crucial for detecting significant alterations in the underlying data distributions. Upon the 

identification of such drift, the system adeptly adjusts learning rates, recalibrates belief confidences, and, in 

critical situations, reconstructs the entire belief system in line with the most current data. This adaptive 

capability serves as a distinguishing characteristic that sets AMFUP apart from conventional static 

approaches, which may become irrelevant as domains evolve. 
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3.3 |Multi-Modal Pattern Embedding (MMPE) 

The existing approaches used for representing patterns are limited with significant drawbacks that prevent 

the effective similarity calculation and similar patterns comparison. Current methods such as UCRP-miner 

and DBSCAN use binary encoding frameworks that simplify patterns into plain vectors indicating items 

presence or absence, and thus ignore the semantic connections between these items.  To illustrate, consider 

the two patterns: organic_milk, whole_grain_bread → healthy_lifestyle and dairy_product, bakery_item → 

wellness_focus. Although these patterns are semantically very similar, traditional binary encoding results in a 

computed similarity close to zero due to lexical discrepancies, which consequently leads to overlooked 

connections and diminished pattern quality. The MMPE effectively addresses these intrinsic limitations by 

employing an advanced neural architecture that includes four specialized branches, each meticulously 

designed to capture diverse dimensions of pattern semantics and interrelations. 

Structural Branch - Graph Neural Network (GNN) Processing: Patterns are articulated as attributed 

graphs 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃), where nodes signify items and edges encompass co-occurrence relationships, 

temporal dependencies, and categorical hierarchies. We employ Graph Attention Networks (GAT) which 

are engineered to identify and emphasize the most relevant structural relationships.  

𝒉𝑖
(𝑙+1)

= 𝜎 ( ∑ 𝛼𝑖𝑗
(𝑙)

𝑗∈𝒩(𝑖)

𝐖(𝑙)𝐡𝑗
(𝑙)

) (2) 

In this context, attention weights 𝛼𝑖𝑗
(𝑙)

 are derived using a learnable attention mechanism designed to discern 

which item relationships hold the most significance for the comprehension of patterns. The calculation of 

attention takes into account both the structure of the local neighborhood and the overarching topology of 

the graph, thereby facilitating the identification of both direct associations between items and transitive 

relationships within item hierarchies.  

Semantic Branch - Transformer-Based Comprehension: The semantic branch utilizes pre-trained 

language models to comprehend conceptual relationships among items that transcend mere co-occurrence 

statistics. Each pattern is transformed into a natural language description and subsequently processed using 

BERT-style transformers: 

𝐸𝑠𝑒𝑚(𝑃) = BERT([CLS] ⊕ item1 ⊕ SEP ⊕. . .⊕ item𝑘 ⊕ [SEP]) (3) 

The semantic processing includes specialized terminology and ontologies pertinent to the domain, achieved 

by fine-tuning on product descriptions, classifications, and relationships. This approach allows the system to 

recognize the semantic equivalence of terms such as "organic_milk" and "dairy_product," thereby 

facilitating a connection between varying levels of abstraction in item descriptions. 

Statistical Division - Integration of Conventional Metrics: Although semantic and structural 

comprehension offers essential context, conventional statistical measures continue to play a significant role 

in capturing frequency-based associations and guaranteeing statistical validity. The statistical division 

integrates established metrics from pattern mining: 

𝐸𝑠𝑡𝑎𝑡(𝑃) = [support(𝑃),confidence(𝑃),lift(𝑃),conviction(𝑃),kulc(𝑃)] (4) 

Each metric elucidates distinct facets of pattern robustness and dependability. Support quantifies absolute 

frequency, confidence signifies predictive capability, lift assesses the intensity of dependencies, conviction 

evaluates the strength of rules, and kulc affords a comprehensive perspective on bidirectional associations. 

Fusion Layer - Attention-Based Integration: The fusion layer utilizes multi-head attention mechanisms 

to systematically integrate information from all branches, adapting to both the characteristics of the data 

and the specific requirements of the task at hand. 
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𝐸(𝑃) = LayerNorm(𝐸𝑠𝑡𝑟𝑢𝑐𝑡(𝑃) +MultiHeadAttention(𝑄, 𝐾, 𝑉)) (5) 

In this framework, inquiries are generated from structural embeddings, while the keys and values 

amalgamate the outputs from all branches. The attention mechanism is designed to prioritize various 

components contingent upon the context; for example, it may assign greater significance to semantic 

similarity in text-dominated fields or to structural relationships in domains characterized by a high volume 

of transactions. 

Training Methodology: MMPE training employs a sophisticated multi-objective approach that ensures 

embeddings capture all relevant pattern aspects: 

ℒ𝑀𝑀𝑃𝐸 = 𝜆1ℒ𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 + 𝜆2ℒ𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + 𝜆3ℒ𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 (6) 

The reconstruction loss ensures that embeddings preserve the inherent pattern information, whereas the 

contrastive loss fosters semantic similarity within the embedding space through triplet learning, utilizing 

techniques for hard negative mining. Furthermore, the semantic consistency loss guarantees alignment with 

external knowledge sources, such as domain ontologies and expert annotations. 

3.4 |Dynamic Belief Adaptation (DBA) 

Static belief systems constitute a substantial hindrance to the current methodologies employed for 

unexpected pattern discovery. Conventional techniques, such as UCRP-miner and clustering-centric 

approaches, presuppose that the data distribution and domain knowledge remain unchanged over time. 

Nevertheless, practical scenarios manifest concept drift, wherein fundamental relationships undergo 

transformation, thereby rendering static beliefs either obsolete or misleading. The DBA addresses this issue 

through the integration of an advanced adaptive belief system that continuously evolves in response to new 

information while simultaneously ensuring stability for reliable pattern detection. This system skillfully 

balances the competing requirements of adaptability, responding to genuine changes and stability mitigating 

excessive volatility that may result from noise. 

Comprehensive Belief Representation: Each belief in our system is represented as a rich data structure 

that captures both pattern information and temporal dynamics: 

ℬ = ⟨𝐴𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡, 𝐶𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡, 𝐞ℬ, 𝜎ℬ, 𝜏ℬ , 𝜌ℬ, ℋℬ⟩ (7) 

where each component serves a specific purpose: the antecedent and consequent define the logical 

structure, 𝐞ℬ provides multi-modal embedding from MMPE, 𝜎ℬ tracks current strength measures, 𝜏ℬ 

records temporal information, 𝜌ℬ measures stability over time, and ℋℬ maintains historical trajectory data. 

Evidence-Based Adaptive Updates: The mechanism for belief updating functions through a systematic, 

multi-stage process that progressively integrates new evidence while reducing unpredictable behavior. For 

each emerging pattern, we calculate evidence scores that assess the degree of  their support or contradiction. 

This updating mechanism employs temporal weighting prioritizing recent evidence through an exponential 

decay approach: 𝑤(𝑡) = exp(−𝜆𝑑𝑒𝑐𝑎𝑦 ⋅ (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡)). 

Sophisticated Update Formula: The fundamental principle of core belief strength evolution integrates 

weighted evidence with drift compensation:  

𝜎ℬ
(𝑡+1)

= 𝛼 ⋅ 𝜎ℬ
(𝑡)

+ 𝛽 ⋅ ∑ 𝑤

𝑝∈𝑃𝑛𝑒𝑤

(𝜏𝑝) ⋅ Evidence(𝑝, ℬ) + 𝛾 ⋅Drift𝑐𝑜𝑚𝑝(ℬ) (8) 

The drift compensation element  Drift𝑐𝑜𝑚𝑝(ℬ) addresses systematic changes in data distribution by 

examining patterns detected within sliding time frames, thereby enabling the system to discern between 

random fluctuations and genuine conceptual shifts. 

Multi-Criteria Quality Assessment: To maintain system efficiency and prevent belief system degradation, 

DBA employs comprehensive quality assessment across multiple dimensions: 
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𝑄(ℬ) = 𝑤1 ⋅ Support(ℬ) + 𝑤2 ⋅ Stability(ℬ) + 𝑤3 ⋅ Predictive_Power(ℬ) + 𝑤4 ⋅ Domain_Relevance(ℬ) (9) 

support measures are founded on statistical evidence, while stability monitors guarantee consistency over 

time. Evaluations of predictive capability examine the precision of forecasts, and assessments of domain. 

Beliefs that fail to meet adaptive quality criteria are systematically removed to improve computational 

efficiency, thereby retaining the most relevant elements of knowledge. 

AMFUP separates pattern representation from belief evaluation by learning multi-modal embeddings 

independently of prior beliefs and introducing beliefs only as soft, adaptive priors within the DBA 

component. These beliefs are gradually updated and evidence-driven, reducing bias amplification and 

ensuring convergence toward data-consistent beliefs. Additionally, AMFUP systematically models 

subjectivity through adaptive belief systems, allowing different interpretations of unexpectedness without 

requiring expert intervention while maintaining full automation and scalability. 

3.5 |Automated Parameter Learning (APL) 

The manual adjustment of parameters constitutes a significant constraint that considerably restricts the 

practical implementation of current methods for discovering unexpected patterns. Conventional strategies 

necessitate the involvement of domain specialists to manually set numerous parameters, such as similarity 

thresholds, support values, clustering parameters, confidence levels, and hyperparameters of algorithms. 

APL addresses this issue by employing sophisticated meta-learning optimization techniques that 

independently ascertain the most appropriate parameter configurations across the comprehensive parameter 

landscape of the system, thereby eliminating the requirement for human intervention.  

Comprehensive Parameter Space Characterization: The entire parameter space consists of various 

component configurations and their interrelations: 

Θ = {Θ𝑀𝑀𝑃𝐸 , Θ𝐷𝐵𝐴, Θ𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛, Θ𝑔𝑙𝑜𝑏𝑎𝑙} (10) 

wherein each subset governs distinct facets of system behavior. Θ𝑀𝑀𝑃𝐸 embedding dimensions, the number 

of attention heads, loss weighting factors, and learning rates pertinent to the multi-modal embedding 

component. Θ𝐷𝐵𝐴 incorporates belief update coefficients, temporal decay rates, quality thresholds, and 

parameters for drift detection. 

Multi-Objective Optimization Framework: APL confronts the challenge of parameter optimization by 

employing a refined strategy that harmonizes multiple conflicting objectives: 

maxΘ𝒥(Θ) = ∑ 𝑤𝑘

𝐾

𝑘=1

⋅ 𝑓𝑘(Θ) (11) 

The objective functions encompass various dimensions of system performance: they evaluate pattern quality 

by considering factors such as novelty, actionability, and unexpectedness scores; they assess computational 

efficiency through the analysis of runtime and memory consumption; they determine robustness by 

scrutinizing performance variability across different datasets and conditions. 

Hierarchical Optimization Strategy: In light of the intricate and hybrid (continuous/discrete) 

characteristics of the parameter space, APL adopts an advanced three-tier hierarchical optimization 

methodology: 

Level 1 - Continuous Parameter Optimization: In the case of differentiable parameters, including neural 

network weights, learning rates, and loss weighting factors, APL employs sophisticated gradient-based 

optimization techniques that feature adaptive learning rates. 

Level 2 - Discrete Parameter Search: In the evaluation of categorical and discrete parameters, which 

encompass clustering techniques, distance measures, and algorithmic selections, APL utilizes evolutionary 

algorithms integrated with genetic operators tailored to the specific problem at hand. 
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Level 3 - Meta-Hyperparameter Learning: The most advanced level of optimization utilizes Bayesian 

optimization to refine the optimization process, encompassing factors such as mutation rates, population 

sizes, criteria for convergence, and weights assigned to the objective functions. 

3.6 |Unexpected Pattern Detection Algorithm 

The integration of MMPE, DBA, and APL components culminates in a sophisticated pattern detection 

algorithm capable of identifying anomalous patterns via a process characterized by iterative refinement and 

adaptive optimization. Unlike traditional methodologies that rely on static procedures, our algorithm 

continuously improves its detection strategy in alignment with recognized patterns and the changing 

characteristics of the data. 

Algorithm 1. AMFUP Pattern Detection 

  Input: Dataset 𝐷, Initial beliefs 𝐵0, Quality threshold 𝜏𝑞𝑢𝑎𝑙𝑖𝑡𝑦 

Output: Ranked unexpected patterns 𝑃𝑟𝑎𝑛𝑘𝑒𝑑 

PHASE 1: Component Initialization 

1. Initialize components: MMPE ← MultiModalPatternEmbedding, DBA ←
DynamicBeliefAdaptation(𝐵0), APL ← AutomatedParameterLearning 

2. Initialize parameters: 𝛩 ← APL.initialize_parameters 

3. Initialize data structures: 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝐵0, 𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ← ∅, 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 ← ∅ 

4. Split dataset: 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 ← split_dataset(𝐷,ratio = 0.8) 

5. Initialize weights: 𝑤1 ← 0.4, 𝑤2 ← 0.3, 𝑤3 ← 0.2, 𝑤4 ← 0.1 

PHASE 2: Data Preprocessing 

6. 𝐷𝑐𝑙𝑒𝑎𝑛 ← remove_noise_transactions(𝐷) 

7. 𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← mine_association_rules(𝐷𝑐𝑙𝑒𝑎𝑛, min_𝑠𝑢𝑝𝑝𝑜𝑟𝑡 = 𝛩[𝜎𝑚𝑖𝑛]) // FP-Growth 

8. 𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← prune_redundant_rules(𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) 

PHASE 3: Main Detection Loop 

9. For epoch ← 1 to 𝛩[𝑁𝑒𝑝𝑜𝑐ℎ𝑠]: 

  9.1 Generate Embeddings  

o 𝐸 ← MMPE_Embedding(𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) 

o For each 𝑝 ∈ 𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠: 

 Structural: 𝑒𝑠𝑡𝑟𝑢𝑐𝑡 ← GAT(𝐺𝑝) where 𝐺𝑝 = (𝑉𝑝, 𝐸𝑝) 

 Semantic: 𝑒𝑠𝑒𝑚 ← BERT([CLS] ∥ item1 ∥ [SEP] ∥ ⋯ ∥ item𝑘 ∥ [SEP]) 

 Statistical: 𝑒𝑠𝑡𝑎𝑡 ← [support(𝑝),confidence(𝑝),lift(𝑝),conviction(𝑝),kulc(𝑝)] 

 Fusion: 𝐸[𝑝] ← LayerNorm(𝑒𝑠𝑡𝑟𝑢𝑐𝑡 +MultiHeadAttention(𝑄, 𝐾, 𝑉)) 

  9.2 Update Belief 

o 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← DBA_Management(𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝐸, 𝛩) 

o Evidence computation: For each 𝑝 ∈ 𝑃𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, compute Evidence(𝑝, 𝑏) using 

temporal weights 𝑤(𝜏𝑝) = exp (−𝛩𝐷𝐵𝐴[𝜆𝑑𝑒𝑐𝑎𝑦] ⋅ (𝑡𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝜏𝑝)) 
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o Update strength (Eq. 9): 𝜎𝑏
(𝑡+1)

← 𝛩𝐷𝐵𝐴[𝛼] ⋅ 𝜎𝑏
(𝑡)

+ 𝛩𝐷𝐵𝐴[𝛽] ⋅ ∑ 𝑤𝑝 (𝜏𝑝) ⋅

Evidence(𝑝, 𝑏) + 𝛩𝐷𝐵𝐴[𝛾] ⋅ Drift𝑐𝑜𝑚𝑝(𝑏) 

o Quality assessment: 𝑄(𝑏) ← 𝑤1 ⋅ Support(𝑏) + 𝑤2 ⋅ Stability(𝑏) + 𝑤3 ⋅

Predictive_Power(𝑏) + 𝑤4 ⋅Domain_Relevance(𝑏); prune if 𝑄(𝑏) < 𝛩[𝜏𝑝𝑟𝑢𝑛𝑒] 

o Drift detection: If significant drift detected, recalibrate rates/confidences; if severity 
exceeds threshold, reconstruct beliefs 

  9.3 Identify Outliers 

o outlier_patterns ← identify_outliers(𝐸, 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝛩) // DBSCAN clustering on belief 
embeddings 

  9.4 Verify Contradictions  

o 𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← Contradiction_Verification(outlier_patterns, 𝐵𝑐𝑢𝑟𝑟𝑒𝑛𝑡 , 𝐸, 𝛩) 

o For each outlier 𝑜: Check 4 conditions (logical contradiction 𝐵𝑜 ∩ 𝑌𝑏 = ∅, antecedent 

similarity ≥ 𝛩[𝜃𝑠𝑖𝑚], statistical significance, context overlap) 

o Compute contradiction strength (Eq. 14): contradiction_strength = sim(𝐴, 𝑋) ⋅
contradiction(𝐵, 𝑌) ⋅ support_factor ⋅ context_overlap 

o If contradiction_score > 𝛩[𝜏𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛]: Add to 𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 

  9.5 Assess Quality 

o 𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 ←

Quality_Assessment(𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠, 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 , 𝐸, 𝐷, 𝛩, 𝜏𝑞𝑢𝑎𝑙𝑖𝑡𝑦) 

o For each candidate 𝑐: Compute quality score (Eq. 13) = 𝑤1 ⋅ unexpectedness+ 𝑤2 ⋅
actionability+ 𝑤3 ⋅ novelty+ 𝑤4 ⋅ statistical_significance 

o If quality_score > 𝜏𝑞𝑢𝑎𝑙𝑖𝑡𝑦: Add to 𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 and update 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 

  9.6 Optimize Parameters 

o 𝛩 ← APL_Optimization(𝛩, 𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 , 𝐷𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) 

o Compute objective (Eq. 12): 𝐽(𝛩) = ∑ 𝑤𝑘
4
𝑘=1 ⋅ 𝑓𝑘(𝛩) where 𝑓1=quality, 𝑓2=-cost, 

𝑓3=robustness, 𝑓4=interpretability 

o Hierarchical optimization: Level 1 (gradient-based for continuous), Level 2 (evolutionary 
for discrete), Level 3 (Bayesian for meta-hyperparameters) 

  9.7 Check Convergence 

o If convergence criteria met: break 

PHASE 4: Final Ranking 

10. 𝑃𝑟𝑎𝑛𝑘𝑒𝑑 ← rank_patterns_by_interestingness(𝑃𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑) // Using 𝐼𝑠(𝑃) = 𝜃1 ⋅ PQS(𝑃) +

𝜃2 ⋅ 𝐶𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑃, 𝐵)  

11. Return 𝑃𝑟𝑎𝑛𝑘𝑒𝑑 

Pattern Quality Evaluation Framework: The algorithm utilizes an advanced quality evaluation 

framework that transcends conventional metrics in order to encompass the practical value of patterns: 

𝑄(𝑝) =    𝑤1 ⋅ Unexpectedness(𝑝) + 𝑤2 ⋅ Actionability(𝑝) + 𝑤3 ⋅Novelty(𝑝) + 𝑤4

⋅ Statistical_Significance(𝑝) (12) 

Each element is meticulously crafted to meet specific criteria imperative for proficient pattern recognition. 

The dimension of unexpectedness evaluates how significantly a pattern challenges existing assumptions 

through the application of embedding-based similarity measures and an examination of logical 

inconsistencies. Actionability assesses the ability of domain specialists to extract meaningful actions from 
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the recognized pattern. Novelty ensures that the patterns in question have not been previously documented 

by performing comparisons against historical pattern databases. 

Evaluation of Contradiction Strength: In the assessment of patterns and beliefs, the computation of 

contradiction strength encompasses several factors: 

contradiction_strength(𝑝, 𝑏)

= sim(𝐴, 𝑋) ⋅ contradiction(𝐵, 𝑌) ⋅ support_factor(𝑝, 𝑏) ⋅ context_overlap(𝑝, 𝑏) (13) 

This extensive approach guarantees that the identified contradictions possess significance rather than being 

trivial. The antecedent similarity aspect utilizes MMPE embeddings to encapsulate semantic relationships 

that extend beyond mere lexical alignment. The consequent contradiction aspect assesses the extent of 

logical opposition between the results. 

Computational Complexity and Efficiency: The algorithm achieves significant computational 

improvements through several optimization strategies. The overall time complexity is 𝑂(𝑛 log 𝑛 +

𝑘 log 𝑘 + 𝑑2) where 𝑛 represents pattern count, 𝑘 denotes belief count (typically 𝑘 ≪ 𝑛), and 𝑑 indicates 

parameter space dimension. This represents substantial improvement over existing 𝑂(𝑛2) approaches that 

require pairwise pattern comparisons. 

4 |Experiment 

4.1 |Experimental Setup 

4.1.1 |Datasets  

We assess AMFUP across eight distinct datasets to illustrate its effectiveness and scalability. Each dataset 

poses specific challenges associated with the discovery of unforeseen patterns. In our  study, we employ 

four esteemed benchmark datasets obtained from the UCI Machine Learning Repository [22], the Adult 

Income dataset, which comprises 32,561 instances and 14 features [23], the Breast Cancer Wisconsin 

dataset, consisting of 286 instances and 9 features [24], the Credit Approval dataset, containing 690 

instances and 15 features [25] and the Mushrooms dataset, which encompasses 8,124 instances and 22 

features [26]. These datasets are established benchmarks that facilitate comparative analysis with prior 

research within the realm of unexpected pattern discovery [8], [9], [5]. The study integrates four additional 

datasets: the Credit Card Fraud Detection dataset, sourced from Kaggle, which comprises a total of 284,807 

records along with 30 attributes [27], the Web Server Access Logs obtained from the NASA Kennedy Space 

Center, which includes 280,000 hits that exhibit discernible temporal patterns [28], the Intel Lab Sensor 

Network dataset, which consists of 500,000 readings collected from 15 sensors and the Social Media 

Engagement dataset drawn from the Twitter API sourced from Kaggle , encompassing 1 million posts 

together with associated text and metadata. These datasets illustrate the existence of concept drift and multi-

modal features, both of which are essential for evaluating adaptive capabilities. All datasets underwent 

preprocessing utilizing standard methodologies that have been previously established in unexpected pattern 

mining research [3], [24]. Continuous attributes were discretized through equal-frequency binning, 

comprising 5 bins. Missing values were addressed through mode imputation for categorical variables, and 

temporal attributes were partitioned into significant intervals, in accordance with the methodology 

proposed by Padmanabhan and Tuzhilin [5]. 

4.1.2 |Evaluation Metrics 

We establish four comprehensive metrics to evaluate the quality of unexpected pattern discovery, drawing 

upon well-established interestingness measures found within the literature [3], [4]: 

Pattern Quality Score (PQS): A composite metric combining four dimensions following Silberschatz and 

Tuzhilin's framework [3]: 𝑃𝑄𝑆 = 0.4 ⋅ 𝑈 + 0.3 ⋅ 𝐴 + 0.2 ⋅ 𝑁 + 0.1 ⋅ 𝐼. PQS is computed as a weighted 
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combination of four fully automated criteria. Unexpectedness U is quantified through embedding-based 

contradictions between mined patterns and adaptive beliefs. Actionability A is measured using statistical 

utility indicators, such as lift and probability deviation. Novelty N captures non-redundancy by evaluating 

the distance between newly discovered patterns and historical archives in the embedding space. 

Interpretability I is computed using structural simplicity metrics based on the rule length and complexity. 

Importantly, all components are derived automatically without requiring expert annotation or human 

scoring. 

Parameter Sensitivity Index (PSI): Measures robustness across parameter variations [22]: 𝑃𝑆𝐼 =
𝜎(Performance)

𝜇(Performance)
  where lower values indicate greater stability. 

We implemented the AMFUP framework using Python and conducted all experiments on the Kaggle 

platform, which provided a convenient and reproducible online execution environment with access to 

datasets. Kaggle offers optional hardware accelerators, such as NVIDIA T4 GPUs and TPUs, which were 

utilized solely to reduce training time for deep learning-based components including PyTorch- or 

TensorFlow-based implementations of MMPE and DBA. Importantly, the proposed AMFUP framework 

does not rely on specialized high-end GPU clusters or extensive high-performance computing 

infrastructure; hardware acceleration is not a functional requirement but rather an optional optimization for 

improving runtime efficiency. For statistical modeling and optimization components, we employed scikit-

learn for APL and model tuning, along with Pandas and NumPy for efficient data preprocessing and 

handling. All experiments were executed within Kaggle's interactive notebook environment, enabling end-

to-end execution of the AMFUP pipeline, real-time analysis of results, and reproducibility of experiments. 

4.1.3 |Baseline Methods 

We conduct a comparison with five exemplary methodologies that encompass a range of different 

theoretical frameworks:  

The UCRP-miner [8] serves as the forefront of contemporary advancements in the realm of closed 

pattern-based unexpected pattern discovery. We have executed the original algorithm while adhering to the 

parameters set forth in the foundational paper, namely, MaxSup = 0.1, MinSup = 0.001, and a similarity 

threshold of 0.6.   

DBSCAN-based Clustering follows the methodology of Bui-Thi et al. [9] , employing a density-based 

clustering technique to discern beliefs and outliers classified as anomalous patterns. The parameters utilized 

are eps=0.5 and minPts=5, accompanied by binary feature encoding as detailed in their implementation. 

The Belief-Driven Method adopts the foundational approach established by Padmanabhan and Tuzhilin 

[5], necessitating the manual specification of beliefs in accordance with their ZoomUR algorithm.  

Deep Auto Encoder Baseline: This contemporary deep learning methodology employs a three-layer 

encoder-decoder framework (with a latent dimension of 64) for the identification of pattern anomalies, 

adhering to established norms in the field of neural anomaly detection [24]. 

Random Forest Outlier Detection [25] is an ensemble-based approach that utilizes isolation scores for 

the identification of unexpected patterns. This method has been implemented using scikit-learn with its 

default parameters. 

4.2 |Overall Performance Analysis 

Table1 shows a comprehensive comparison of performance with regarding all datasets and metrics 

analyzed. The AMFUP model demonstrates considerable improvements across all evaluation criteria. 
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Table 1. Comprehensive performance comparison. 

Method PQS ↑ PSI ↓ Runtime (min) ↓ 

UCRP-miner [8] 0.72 0.31 45 

DBSCAN + Clustering [9] 0.68 0.45 38 

Belief-Driven [5] 0.75 0.52 52 

Deep AutoEncoder [24] 0.61 0.28 22 

Random Forest [25] 0.59 0.33 18 

AMFUP 0.96 0.12 12 

 

Statistical significance was established using paired t-tests with Bonferroni correction (p < 0.001 for all 

comparisons). AMFUP achieves a 28% improvement in pattern quality over the best baseline while 

reducing computational time by 73.3%. 

4.3 |Scalability Analysis 

Runtime Scalability: Figure 2 illustrates the computational efficiency of AMFUP across varying dataset 

sizes. In contrast to baseline methods that exhibit a complexity nearing O(n²), AMFUP consistently upholds 

O(n log n) scalability by employing effective neural network batching and enhanced belief update 

mechanisms, in accordance with the principles of scalable pattern mining [16]. 

Parameter Sensitivity: AMFUP demonstrates minimal parameter sensitivity (PSI = 0.12) when compared 

to baseline models (PSI range: 0.28-0.52). This signifies a strong performance across varied parameter 

configurations without the necessity for extensive adjustments, which represents a significant benefit over 

current methodologies [8], [9].  

The experimental findings confirm the efficacy of AMFUP across various datasets, all while preserving 

computational efficiency and necessitating minimal parameter adjustment, attributes that are crucial for 

practical implementation in real-world scenarios. 

 
Figure 2. Runtime Scalability Comparison Across Dataset Sizes. 

 

5 |Conclusion and Future Work 

5.1 |Summary of Contributions 

  This paper presents AMFUP (Adaptive Multi-Modal Framework for Unexpected Pattern Discovery), an 

innovative approach that tackles essential shortcomings present in current unexpected pattern mining 
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techniques. Our framework offers four significant methodological enhancements that elevate the 

advancements within knowledge discovery systems. 

Methodological Innovations: First, we have established an adaptive belief framework that systematically 

adjusts to variations in data patterns, effectively addressing the constraints associated with static belief 

systems employed in current methodologies, including UCRP-miner and clustering-based techniques. In 

contrast to conventional approaches that depend on fixed belief systems derived from past data, DBA 

component perpetually refreshes beliefs in response to newly available evidence, while ensuring stability 

through the implementation of decay factors and strategies for drift compensation. Second, we have 

implemented MMPE, a system that adeptly captures semantic, structural, and statistical relationships among 

patterns via dedicated neural network branches. This advancement effectively mitigates the significant 

constraint of current methodologies that are restricted to either lexical or binary representations of patterns. 

Consequently, our framework can recognize that semantically equivalent patterns, such as milk → bread 

and dairy → bakery, ought to be regarded in a similar fashion, notwithstanding their lexical variances. Third, 

we have formulated an APL system that obviates the necessity for manual parameter adjustments, a feature 

that complicates current methodologies. Conventional methods require extensive manual modifications to 

similarity thresholds, support values, and clustering parameters; in sharp contrast, our meta-learning 

optimization autonomously identifies the most suitable parameter configurations tailored to each dataset. 

Finally, we have introduced a unified theoretical framework, supplemented by a complexity analysis that 

illustrates a performance of O (n log n) as opposed to the O(n²) performance associated with existing 

methodologies.  

Our comprehensive evaluation encompassing eight diverse datasets demonstrates that AMFUP achieves the 

highest Pattern Quality Score (PQS) of 0.96, representing a 28% improvement over the best baseline 

method (belief-driven). Concurrently, AMFUP establishes itself as the fastest method (runtime: 12 min), 

achieving a substantial 73.3% reduction in runtime compared to UCRP-miner (runtime: 45 min) and a 

33.3% reduction compared to Random Forest (runtime: 18 min). AMFUP achieves a 43.28% increase in 

PQS and a 46.68% reduction in execution runtime compared to the average performance of the baseline 

methods.  

5.2 Limitations and Future Directions 

Although the AMFUP demonstrates consistent improvements over baseline methods, its performance is 

influenced by practical constraints related to the data scale and computational resources. The multimodal 

embedding and belief adaptation components introduce additional computational overhead, which may 

affect the runtime performance on extremely large datasets or limited hardware configuration.Furthermore, 

although the framework is robust to moderate parameter variations, extreme settings or highly constrained 

environments may require further optimization to maintain efficiency. Future work will extend the 

AMFUP in three directions. First, the performance of the model will be evaluated under extreme-scale data 

and heterogeneous hardware settings, exploring scalability limits and resource-aware optimizations, as well 

as conducting a deeper sensitivity analysis to distinguish true methodological gains from parameter-

dependent effects. Second, more advanced belief modeling within the DBA module will be investigated, 

including robustness to incomplete or biased initial beliefs through uncertainty-aware initialization, multi-

user belief fusion, and confidence-weighted updates, with the possibility of lightweight expert feedback for 

calibration while maintaining the automation. Third, the AMFUP will be adapted for streaming and 

dynamic environments by developing online versions of the MMPE and DBA to support real-time 

embedding and belief updates under concept drift without full retraining. 
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