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Abstract

The discovery of unexpected patterns represents a critical advancement in knowledge discovery, enabling the
identification of rare yet meaningful contradictions that defy conventional frequency-based assumptions.
However, existing techniques frequently suffer from three major limitations: (1) rigidity in adapting to evolving
data distributions, (2) limited capacity to interpret semantic relationships among patterns, and (3) dependency on
extensive manual tuning for parameter optimization. To overcome these challenges, this paper introduces the
Adaptive Multi-Modal Framework for Unexpected Pattern Discovery (AMFUP), a comprehensive architecture
that enhances adaptability, semantic understanding, and automation in pattern mining. AMFUP integrates three
synergistic components: the Multi-Modal Pattern Embedding (MMPE), which captures structural, semantic, and
statistical dimensions of patterns through neural architectures; the Dynamic Belief Adaptation (DBA) module,
which continuously evolves belief systems in response to concept drift; and the Automated Parameter Learning
(APL) mechanism, which employs meta-learning to optimize parameters without human intervention.
Experimental results across eight datasets demonstrate that AMFUP achieves the highest Pattern Quality Score
PQS) of 0.96, representing a 28% improvement over the best baseline method (belief-driven). Concurrently,
AMFUP establishes itself as the fastest method with a runtime of 12 minutes, achieving a 73.3% reduction
compared to UCRP-miner (45 min) and a 33.3% reduction compared to Random Forest (18 min). AMFUP
achieves a 43.28% increase in PQS and a 46.68% reduction in execution runtime compared to the average
performance of baseline methods.

Keywords: Unexpected Patterns, DM, KDDs, Multi-Modal Pattern Embedding, Automated Parameter Learning.

1 |Introduction

The domain of knowledge discovery has consistently confronted the essential challenge of differentiating
significant patterns from noise within extensive datasets. Although conventional pattern mining
methodologies are proficient in identifying frequent item sets and association rules, they frequently inundate
analysts with numerous apparent or trivial patterns that contribute minimal actionable insights. Knowledge
discovery in databases (KDDs), commonly referred to as data mining (IDM), is characterized as the non-
trivial endeavor of uncovering valid, novel, potentially useful, and ultimately comprehensible patterns from
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data [1]. Nonetheless, a substantial portion of the research within the field of knowledge discovery
predominantly emphasizes the validity aspect, while the other two dimensions, namely novelty and
usefulness, receive comparatively less attention [2, 3]. The identification of unexpected patterns signifies a
transformative shift from frequency-driven mining methodologies to those centered on contradiction-based
exploration. Unexpectedness constitutes one of the nine criteria proposed to assess the significance of a
pattern in relation to a specific research inquiry [4]. The criterion of unexpectedness holds substantial
importance, as it underscores the need to identify patterns that confront users' pre-existing beliefs or
established knowledge [5]. Unlike conventional methods which concentrate on the detection of commonly
occurring patterns, unexpected pattern mining seeks to reveal rare yet significant patterns that oppose
established convictions or normative expectations concerning behavior [6]. Within the realm of healthcare,
it is widely recognized that, patients undergoing treatment for hypertension benefit from improved control
of their blood pressure levels. Nonetheless, an unexpected event may suggest that, patients who are
administered hypertension medication alongside specific dietary supplements may present adverse reactions.
Although such occurrences are rare, they hold considerable significance for both patient safety and
treatment guidelines. Numerous practical applications necessitate the identification of unusual or
unexpected patterns (rare patterns). For instance, the combination of diapers and beer is observed less
frequently than that of milk and bread, yet it yields a greater profit margin compared to milk and bread [7].
Notwithstanding the considerable advancements in the discovery of unexpected patterns, current
methodologies exhibit three fundamental limitations that significantly hinder their practical application.
Firstly, the leading methods, such as UCRP-miner and clustering-based techniques, depend on fixed belief
systems established from historical data snapshots [8, 9]. In an attempt to reduce the occurrence of
redundant patterns and the consequent degradation in performance, researchers have proposed effective
strategies designed to obtain a concise representation of patterns, referred to as closed rare patterns [8].
However, these static concepts do not possess the ability to adjust to changes in the fundamental data
distributions, making them inappropriate for dynamic environments in which patterns evolve over time.
Furthermore, traditional methods demand considerable manual adjustment of similarity thresholds, support
values, and clustering parameters. For example, the DBSCAN algorithm, utilized for the identification of
candidate unexpected rules, necessitates the specification of two parameters: minPts and eps [9]. The
selection of these parameter values significantly influences the undetlying belief system as well as the
recognized outliers. Furthermore, conventional methodologies tend to focus exclusively on variations in
lexical or structural patterns, thereby neglecting the semantic relationships that exist among these patterns
[10, 11]. A fundamental representation of the feature vector associated with a rule may be a binary encoding
that indicates either the absence or presence of elements contained within the rule [9]. Nevertheless, the
distinction between two binary feature vectors solely pertains to the disparity in the lexical dimension. This
constraint results in semantically analogous patterns being regarded as entirely disparate entities, thus
diminishing the quality of discovery. In response to this challenge, we present the Adaptive Multi-Modal
Framework for AMFUP, an innovative methodology that effectively addresses all three significant
limitations through cohesive integration. AMFUP encompasses three interrelated components: Multi-Modal
Pattern Embedding (MMPE), which is a neural architecture designed to identify patterns that exceed mere
item co-occurrence by synthesizing structural, semantic, and statistical representations through specialized
branches and attention-guided fusion; Dynamic Belief Adaptation (DBA), a self-modifying belief system
that uniquely adjusts to shifting data patterns and integrates mechanisms for detecting concept drift along
with adaptive evaluation of belief quality; and Automated Parameter Learning (APL), a meta-learning
framework that alleviates the necessity for manual parameter tuning through multi-objective optimization,
thus allowing for seamless adaptation across various datasets. This study contributes four significant
advancements to the existing body of knowledge. Firstly, we introduce the first adaptive belief system
capable of evolving in reaction to changing data patterns while maintaining theoretical assurances
concerning pattern quality. Secondly, we present an innovative multi-modal embedding approach that
clarifies semantic relationships between patterns, surpassing traditional lexical comparisons. Thirdly, we
provide an automated parameter optimization framework that eliminates the need for manual configuration
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specific to particular domains. Finally, we demonstrate improved performance across eight varied datasets,
achieving a 43.28% increase in PQS and a 46.68% reduction in execution runtime compared to the average
performance. The wider ramifications of this research go beyond simple enhancements in algorithms. The
structure of the paper is as follows. Section 2 reviews related literature and pinpoints fundamental
shortcomings in current methodologies. Section 3 delineates the AMFUP framework methodology, which
encompasses mathematical formulation and algorithmic specifics. Section 4 presents experimental findings
that indicate significant advancements over leading baseline models. Lastly, Section 5 concludes with an

examination of limitations and suggestions for future research directions.
2 | Related Work and Limitations Analysis

The discovery of unexpected patterns has progressed through three principal methodological frameworks,
each targeting distinct elements of the underlying challenge associated with recognizing patterns that deviate
from established knowledge or conventional behavior expectations [3, 9].

2.1 | Closed Pattern-based Methods

The UCRP-miner framework [8] signifies a substantial advancement within the domain of closed pattern-
based unexpected pattern discovery, drawing upon the principles of closed frequent itemset mining
algorithms [12]. This approach produces closed frequent patterns deemed as established beliefs, indicative
of expected behavior, while closed rare patterns are identified as candidates for additional examination [13].
It employs cosine similarity metrics to evaluate the relationship between rare patterns and their frequent
equivalents. Patterns that demonstrate a substantial degree of similarity to frequent patterns, coupled with a
low support level, are classified as unexpected [14, 15]. This method has been shown to surpass clustering-
based techniques across a range of datasets [8]. Its theoretical underpinnings are rooted in traditional
association rule mining [12] and frequent pattern mining algorithms [16, 17], thereby expanding their
application to encompass rare pattern discovery. UCRP-miner encounters various notable limitations: (1)
the beliefs it generates are static representations based on historical data, rendering them inadequate for
addressing concept drift, (2) cosine similarity measures overlook the semantic interrelations among patterns,
focusing exclusively on lexical overlaps, (3) the process of manually configuring thresholds for similarity and
support parameters requires specialized knowledge within the domain, and (4) the approach fails to
consider the temporal progression of pattern significance [8, 18].

2.2 | Clustering-based Approaches

Clustering-based methodologies, as demonstrated by DBSCAN [19] and the OPECUR frameworks [20],
categorize association rules relying on distance metrics, where dense clusters signify prevailing beliefs
(common patterns) and outliers indicate potentially unforeseen patterns. These methodologies utilize
density-based clustering algorithms that are augmented with contradiction-checking functions to detect
patterns that diverge from established cluster centroids [9, 20]. Recent developments in exception rule
mining [14, 21] have investigated analogous clustering paradigms, aiming to identify rules that are in
contradiction to standard patterns. Despite their theoretical merit, clustering-based methods possess
inherent limitations: (1) a pronounced sensitivity to hyperparameters (eps, minPts) that directly influences
the quality of the belief system [19], (2) binary feature encoding that inadequately captures logical
relationships such as contradiction or semantic similarity [9],(3) the possibility of clustering unexpected
patterns alongside normal ones, resulting in false negatives, and (4) suboptimal scalability in high-

dimensional pattern spaces, characterized by O(n? computational complexity.
2.3 | Belief-driven Methods

The seminal contributions of Silberschatz and Tuzhilin [3] laid the theoretical foundation for the
identification of unexpected patterns influenced by belief systems, elucidating unexpectedness through its
effects on user cognition. This framework differentiates between hard beliefs, which impose rigid



AMFUP: An Adaptive Multi-Modal Framework for Unexpected Pattern Discovery ... 12

constraints, and soft beliefs, which possess the capacity to adjust in response to new evidence. It employs
probabilistic measures to quantify updates to these beliefs. In furtherance of this framework, Padmanabhan
and Tuzhilin [5] introduced definitions grounded in logical contradictions, necessitating that domain experts
manually delineate belief rules, as well as identify mining patterns that conflict with these beliefs, relying on
statistical validation techniques. Other methodologies, such as Bayesian network approaches [13] and
maximum entropy models [15], have been proposed to articulate prior knowledge and evaluate the
unexpectedness of patterns. Liu et al. [6] advanced the concept of general impressions to facilitate user-
friendly belief specifications, while Piatetsky-Shapiro and Matheus [18] concentrated on deviation-based
measures of interestingness. Nonetheless, belief-driven methodologies encounter several practical
challenges: (1) substantial expertise in specific domains is mandatory for effective belief specification [5], (2)
the rigidity of belief systems hinders adaptation to new data patterns, (3) the constraints imposed by logical
contradictions fail to account for semantic interrelations, and (4) scalability issues arise across various
domains due to the necessity for manual knowledge engineering.

2.4 | Fundamental Research Gap

Current methodologies tackle individual components of unexpected pattern discovery; however, they do
not offer a cohesive framework capable of concurrently addressing: (1) adaptive belief evolution that adjusts
to shifting data distributions, (2) semantic pattern comprehension that reflects meaning beyond mere lexical
similarity, and (3) automated parameter optimization that obviates the need for manual tuning. Present
strategies often depend on static belief frameworks [3, 5] or necessitate considerable manual adjustments [8-
9, 20], thereby constraining their practical utility in dynamic real-world contexts. The lack of multi-modal
pattern representations that amalgamate structural, semantic, and statistical information constitutes a
significant deficiency in the existing literature [9]. Conventional binary encodings and distance-based
similarity metrics are insufficient for portraying the intricate relationships among patterns that are crucial for

an accurate assessment of unexpectedness.

3 | Methodology

3.1 | Problem Formalization

The issue of discovering unexpected patterns transcends conventional frequent pattern mining by
emphasizing patterns that actively contradict existing knowledge rather than merely being rare. In the
context of a transactional dataset, whereby each transaction encompasses a subset of items derived from a
comprehensive item set, our objective is to identify association rules that contravene anticipated behavioral
patterns while upholding statistical significance. The primary difficulty resides in differentiating between
patterns that are merely uncommon and those that are genuinely unexpected. For instance, in a retail
context, the belief that "professionals shop on weekends" is widely recognized. An infrequent occutrence,
such as "professionals shop on Tuesday mornings," may simply indicate a lack of activity, wheteas
"professionals shop on weekdays during December" signifies a true contradiction that yields valuable
insights. This differentiation constitutes the essence of our problem formulation.

Definition 1 (Unexpected Pattern). A pattern P: A = B is unexpected with respect to belief B: X —» Y if
and only if:

1. Logical Contradiction: BAY - The consequents are mutually exclusive, ensuring genuine

contradiction rather than mere difference.

2. Antecedent Similarity: sim(4, X) = Oy, - The antecedents exhibit a level of similarity that renders
the contradiction significant.

3. Statistical Significance: Both supp(P) = ¢ and supp(B) = o0 - Both the pattern and the belief are
sufficiently backed by statistical evidence.
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4. Intersection Requitement: |Dynx| = 0 - |D| - A considerable degree of overlap is present between
the contexts of patterns and beliefs. This definition builds upon the logical contradiction framework
established by Padmanabhan and Tuzhilin [5] by incorporating similarity metrics and statistical criteria.
This incorporation ensures practical applicability and mitigates the potential for trivial contradictions to

arise.

5. Optimization Objective: The primary aim entails harmonizing various conflicting objectives by means
of a thorough optimization framework.

maxgp F(P,0)=a-Q(P,0)—pL-C(P,0)+y-I(P,0)+65-R(P,0) (1)
where each component addresses critical practical requirements:

e (Q(P,0): The quality of patterns entails vatious factors, including unexpectedness, actionability, and

novelty.
e ((P,0): Computational cost which include both runtime and memory constraints.
e [(P,0): Interpretability is crucial to guarantee that patterns are understandable .
e R(P,0): Robustness measuring involves evaluating stability across different subsets of data.
e  O: parameter vector must encapsulate all elements of the system.

* a,f,y,6: application-specific weighting factors ate also essential.
3.2 | AMFUP Framework Architecture

AMFUP proficiently addresses the fundamental limitations of existing methodologies by utilizing three
interconnected components that operate within continuous feedback loops. Unlike static approaches like
UCRP-miner, which rely on predetermined similarity thresholds and established belief systems, AMFUP
adapts flexibly to the evolving characteristics of data while maintaining computational efficiency. The
architectural framework establishes a complex information flow whereby advancements in one component
contribute to and enhance the performance of the others, as demonstrated in Figure 1. This architecture has
been adapted and expanded to facilitate the discovery of unexpected patterns, derived from the principles
established in [5], [8], and [9]. The proposed AMFUP framework integrates novel components such as
MMPE, DBA, and APL. AMFUP successfully addresses the fundamental limitations of existing approaches
by utilizing three interconnected elements that operate within continuous feedback mechanisms.

Pattern Mining MMPE DBA Detection ARL

Raw Data — Candidates > Rich Embeddings ~ —I> Update Beliefs —> Unexpected Patterns i Optiniized
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Figure 1. AMFUP framework architecture.

Facilitation of Information Transmission: The unrefined transactional data is subjected to preliminary
pattern extraction through the application of recognized algorithms (such as Apriori and FP-Growth) to
produce candidate association rules. Subsequently, these candidates are processed by the MMPE
component, which generates comprehensive, multi-dimensional representations that concurrently
encapsulate structural, semantic, and statistical characteristics. The DBA component leverages these
embeddings to sustain and refine the belief framework, discerning dense clusters as confirmed beliefs and
sparse outliers as unanticipated pattern candidates.

Backward Optimization Flow: APL module persistently evaluates the quality of patterns and the
performance of the system, modifying parameters across all components via gradient-based and
evolutionary optimization methodologies. This results in a self-enhancing system that progressively
improves its performance over time without the need for manual intervention.

Adaptive Feedback Mechanism: The framework integrates methodologies for identifying concept drift,
which are crucial for detecting significant alterations in the underlying data distributions. Upon the
identification of such drift, the system adeptly adjusts learning rates, recalibrates belief confidences, and, in
critical situations, reconstructs the entire belief system in line with the most current data. This adaptive
capability serves as a distinguishing characteristic that sets AMFUP apart from conventional static
approaches, which may become irrelevant as domains evolve.
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3.3 | Multi-Modal Pattern Embedding (MMPE)

The existing approaches used for representing patterns are limited with significant drawbacks that prevent
the effective similarity calculation and similar patterns compatison. Current methods such as UCRP-miner
and DBSCAN use binary encoding frameworks that simplify patterns into plain vectors indicating items
presence or absence, and thus ignore the semantic connections between these items. To illustrate, consider
the two patterns: organic_milk, whole_grain_bread — healthy_lifestyle and dairy_product, bakery_item —
wellness_focus. Although these patterns are semantically very similar, traditional binary encoding results in a
computed similarity close to zero due to lexical discrepancies, which consequently leads to overlooked
connections and diminished pattern quality. The MMPE effectively addresses these intrinsic limitations by
employing an advanced neural architecture that includes four specialized branches, each meticulously

designed to capture diverse dimensions of pattern semantics and interrelations.

Structural Branch - Graph Neural Network (GNN) Processing: Patterns are articulated as attributed
graphs Gp = (Vp,Ep), where nodes signify items and edges encompass co-occurtence relationships,
temporal dependencies, and categorical hierarchies. We employ Graph Attention Networks (GAT) which
are engineered to identify and emphasize the most relevant structural relationships.

th—l) =g Z al(Jl) W(l)hj(l) (2)
JEN (i)

®

In this context, attention weights @;;” are derived using a learnable attention mechanism designed to discern

which item relationships hold the most significance for the comprehension of patterns. The calculation of
attention takes into account both the structure of the local neighborhood and the overarching topology of
the graph, thereby facilitating the identification of both direct associations between items and transitive
relationships within item hierarchies.

Semantic Branch - Transformer-Based Comprehension: The semantic branch utilizes pre-trained
language models to comprehend conceptual relationships among items that transcend mere co-occurrence
statistics. Hach pattern is transformed into a natural language description and subsequently processed using
BERT-style transformers:

Esem(P) = BERT(|CLS] @ item; @ SEP @...® item, @ [SEP]) (3)

The semantic processing includes specialized terminology and ontologies pertinent to the domain, achieved
by fine-tuning on product descriptions, classifications, and relationships. This approach allows the system to
recognize the semantic equivalence of terms such as "organic milk" and "dairy_product,” thereby
facilitating a connection between varying levels of abstraction in item descriptions.

Statistical Division - Integration of Conventional Metrics: Although semantic and structural
comprehension offers essential context, conventional statistical measures continue to play a significant role
in capturing frequency-based associations and guaranteeing statistical validity. The statistical division
integrates established metrics from pattern mining:

Egtqt (P) = [support(P),confidence(P),lift(P),conviction(P),kulc(P)] (4)

Each metric elucidates distinct facets of pattern robustness and dependability. Support quantifies absolute
frequency, confidence signifies predictive capability, lift assesses the intensity of dependencies, conviction

evaluates the strength of rules, and kulc affords a comprehensive perspective on bidirectional associations.

Fusion Layer - Attention-Based Integration: The fusion layer utilizes multi-head attention mechanisms
to systematically integrate information from all branches, adapting to both the characteristics of the data
and the specific requitements of the task at hand.
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E(P) = LayetNorm(Egtryce (P) + MultiHeadAttention(Q, K, V))  (5)

In this framework, inquiries are generated from structural embeddings, while the keys and values
amalgamate the outputs from all branches. The attention mechanism is designed to prioritize various
components contingent upon the context; for example, it may assign greater significance to semantic
similarity in text-dominated fields or to structural relationships in domains characterized by a high volume
of transactions.

Training Methodology: MMPE training employs a sophisticated multi-objective approach that ensures
embeddings capture all relevant pattern aspects:

LMMPE = AlLreconstruction + Azﬁcontrastive + ASLsemantiC (6)

The reconstruction loss ensures that embeddings preserve the inherent pattern information, whereas the
contrastive loss fosters semantic similarity within the embedding space through triplet learning, utilizing
techniques for hard negative mining. Furthermore, the semantic consistency loss guarantees alignment with

external knowledge sources, such as domain ontologies and expert annotations.
3.4 | Dynamic Belief Adaptation (DBA)

Static belief systems constitute a substantial hindrance to the current methodologies employed for
unexpected pattern discovery. Conventional techniques, such as UCRP-miner and clustering-centric
approaches, presuppose that the data distribution and domain knowledge remain unchanged over time.
Nevertheless, practical scenarios manifest concept drift, wherein fundamental relationships undergo
transformation, thereby rendering static beliefs either obsolete or misleading. The DBA addresses this issue
through the integration of an advanced adaptive belief system that continuously evolves in response to new
information while simultaneously ensuring stability for reliable pattern detection. This system skillfully
balances the competing requirements of adaptability, responding to genuine changes and stability mitigating
excessive volatility that may result from noise.

Comprehensive Belief Representation: Each belief in our system is represented as a rich data structure
that captures both pattern information and temporal dynamics:

B = (Antecedent, Consequent, eg, og, Tg, ps, Hg) (7)

where each component serves a specific purpose: the antecedent and consequent define the logical
structure, g provides multi-modal embedding from MMPE, o3 tracks current strength measures, Tg

records temporal information, pg measures stability over time, and Hg maintains historical trajectory data.

Evidence-Based Adaptive Updates: The mechanism for belief updating functions through a systematic,
multi-stage process that progressively integrates new evidence while reducing unpredictable behavior. For
each emerging pattern, we calculate evidence scores that assess the degree of their support or contradiction.
This updating mechanism employs temporal weighting prioritizing recent evidence through an exponential
decay approach: w(t) = exp(—2gecay * (tcurrent — t))-

Sophisticated Update Formula: The fundamental principle of core belief strength evolution integrates
weighted evidence with drift compensation:

agH) =q- ag) +p- Z w (Tp) - Evidence(p, B) + ¥ - Drifteomp(B)  (8)
PEPnew
The drift compensation element  Drifteomp(B) addresses systematic changes in data distribution by

examining patterns detected within sliding time frames, thereby enabling the system to discern between
random fluctuations and genuine conceptual shifts.

Multi-Criteria Quality Assessment: To maintain system efficiency and prevent belief system degradation,
DBA employs comprehensive quality assessment across multiple dimensions:
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Q(B) = wy - Suppott(B) + w, - Stability(B) + ws - Predictive_Powet(B) + w, - Domain_Relevance(B) (9)

support measures are founded on statistical evidence, while stability monitors guarantee consistency over
time. Evaluations of predictive capability examine the precision of forecasts, and assessments of domain.
Beliefs that fail to meet adaptive quality criteria are systematically removed to improve computational

efficiency, thereby retaining the most relevant elements of knowledge.

AMFUP separates pattern representation from belief evaluation by learning multi-modal embeddings
independently of prior beliefs and introducing beliefs only as soft, adaptive priors within the DBA
component. These beliefs are gradually updated and evidence-driven, reducing bias amplification and
ensuring convergence toward data-consistent beliefs. Additionally, AMFUP systematically models
subjectivity through adaptive belief systems, allowing different interpretations of unexpectedness without

requiring expert intervention while maintaining full automation and scalability.
3.5 | Automated Parameter Learning (APL)

The manual adjustment of parameters constitutes a significant constraint that considerably restricts the
practical implementation of current methods for discovering unexpected patterns. Conventional strategies
necessitate the involvement of domain specialists to manually set numerous parameters, such as similarity
thresholds, support values, clustering parameters, confidence levels, and hyperparameters of algorithms.
APL addresses this issue by employing sophisticated meta-learning optimization techniques that
independently ascertain the most appropriate parameter configurations across the comprehensive parameter
landscape of the system, thereby eliminating the requirement for human intervention.

Comprehensive Parameter Space Characterization: The entire parameter space consists of various

component configurations and their interrelations:

0 = {OmmpE, Oppa Odetections eglobal} (10)

wherein each subset governs distinct facets of system behaviot. @y pp embedding dimensions, the number
of attention heads, loss weighting factors, and learning rates pertinent to the multi-modal embedding
component. Opp, incorporates belief update coefficients, temporal decay rates, quality thresholds, and

parameters for drift detection.

Multi-Objective Optimization Framework: APL confronts the challenge of parameter optimization by
employing a refined strategy that harmonizes multiple conflicting objectives:

K
maxeJ(©) = ) - fe(®) (11
k=1

The objective functions encompass various dimensions of system performance: they evaluate pattern quality
by considering factors such as novelty, actionability, and unexpectedness scores; they assess computational
efficiency through the analysis of runtime and memory consumption; they determine robustness by

scrutinizing performance variability across different datasets and conditions.

Hierarchical Optimization Strategy: In light of the intricate and hybrid (continuous/discrete)
characteristics of the parameter space, APL adopts an advanced three-tier hierarchical optimization
methodology:

Level 1 - Continuous Parameter Optimization: In the case of differentiable parameters, including neural
network weights, learning rates, and loss weighting factors, APL employs sophisticated gradient-based

optimization techniques that feature adaptive learning rates.

Level 2 - Discrete Parameter Search: In the evaluation of categorical and discrete parameters, which
encompass clustering techniques, distance measures, and algorithmic selections, APL utilizes evolutionary
algorithms integrated with genetic operators tailored to the specific problem at hand.
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Level 3 - Meta-Hyperparameter Learning: The most advanced level of optimization utilizes Bayesian
optimization to refine the optimization process, encompassing factors such as mutation rates, population

sizes, criteria for convergence, and weights assigned to the objective functions.
3.6 | Unexpected Pattern Detection Algorithm

The integration of MMPE, DBA, and APL components culminates in a sophisticated pattern detection
algorithm capable of identifying anomalous patterns via a process characterized by iterative refinement and
adaptive optimization. Unlike traditional methodologies that rely on static procedures, our algorithm
continuously improves its detection strategy in alignment with recognized patterns and the changing
characteristics of the data.

Algorithm 1. AMFUP Pattern Detection

Input: Dataset D, Initial beliefs By, Quality threshold Tgyq1ity

Output: Ranked unexpected patterns Prgpred

PHASE 1: Component Initialization

1. Initialize components: MMPE < MultiModalPatternEmbedding, DBA «
DynamicBeliefAdaptation(By), APL « AutomatedParametet]earning

2. Initialize parameters: @ < APL.initialize_parameters

3. [Initialize data structures: Beyrrent < Bo, Punexpected < 9, Phistoricar < @
4. Split dataset: Derqin, Dyaridation < split_dataset(D,ratio = 0.8)

5. Inidalize weights: wy < 0.4, w, < 0.3, w3 < 0.2, w, < 0.1

PHASE 2: Data Preprocessing

6. Dijean < remove_noise_transactions(D)
7. Peandidates < mine_association_rules(D jpqn, min_support = O [op,inl) // FP-Growth

8. Peandidates < Prune—redundant_ﬂﬂes(Pcandidates)

PHASE 3: Main Detection Loop
9.  Forepoch « 1 to @[Nepochs]:

9.1 Generate Embeddings

o E < MMPE_Embedding(P.qnaidates)
o  Foreachp € Pegnaiqates:
»  Structural: €gpyer — GAT(G,) where G, = (1}, Ep)
*  Semantic: €gpy, < BERT([CLS] |l itemq || [SEP] |l --- || itemy, || [SEP])
»  Statistical: €5 < [support(p),confidence(p) lift(p),conviction(p),kulc(p)]
*  Fusion: E[p] « LayerNorm(eggpyce + MultiHeadAttention(Q, K, V))
9.2 Update Belief

o Bewrrent < DBA—Managemeﬂt(Bcurrentr Peandidates E, ©)

o  Evidence computation: For each p € P.gnaigates, compute Evidence(p, b) using

temporal weights W(Tp) = exp (—@DB A [ldecay] . (tcurrent — ‘L'p))
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o Update strength (Eq 9) O'IEt+1) — QDBA[Q] . O'lgt) + ODBA[ﬁ] . ZpW (Tp) .

Evidence(p, b) + Oppaly] - Driftcomp (b)
o Quality assessment: Q(b) < wy - Support(b) + w, - Stability(b) + wy -
Predictive_Power(b) + w, - Domain_Relevance(b); prune if Q(b) < Q[Tprune]

e} Drift detection: If significant drift detected, recalibrate rates/confidences; if severity
exceeds threshold, reconstruct beliefs

9.3 Identify Outliers

o  outlier_patterns « identify_outliers(E, Beyrrent, @) // DBSCAN clustering on belief
embeddings
9.4 Verify Contradictions

0 Pyunexpected candidates < Contradiction_Verification(outlier_patterns, Beyrrent, E, ©)
o  For each outlier 0: Check 4 conditions (logical contradiction B, N'Y, = @, antecedent
similarity = O [0, ], statistical significance, context overlap)

o  Compute contradiction strength (Eq. 14): contradiction_strength = sim(4, X) -
contradiction(B, Y) - support_factor - context_overlap

o If contradiction_score > @ [Tcontradiction]: Add to Punexpected_candidates
9.5 Assess Quality

o Punexpected <
QuahtY—ASSCSSmcnt(Punexpected_candidatesr Puistorica, E, D, 0, Tquality)
o  For each candidate ¢: Compute quality score (Eq. 13) = wy - unexpectedness + w; -
actionability + w3 - novelty + W, - statistical_significance
o If quality_score > Tgyqiity: Add to Pynexpectea and update Phistorical
9.6 Optimize Parameters

o 0 « APL_OptirniZation(@, Punexpected: Dvalidation)
o Compute objective (Eq. 12): J(0) = Y h—1 Wi * f1(0) where f; =quality, f,=-cost,
f3=tobustness, fy=interpretability

o  Hierarchical optimization: Level 1 (gradient-based for continuous), Level 2 (evolutionary
for discrete), Level 3 (Bayesian for meta-hyperparameters)

9.7 Check Convergence

e} If convergence criteria met: break

PHASE 4: Final Ranking

10.  Prgnked < rank_patterns_by_interestingness(Punexpected) // Using Is(P) = 641 - PQS(P) +
02 ' Cstrength(P: B)

11. Return Pranked

Pattern Quality Evaluation Framework: The algorithm utilizes an advanced quality evaluation
framework that transcends conventional metrics in order to encompass the practical value of patterns:

Q(p) = wjy - Unexpectedness(p) + wy - Actionability(p) + wz - Novelty(p) + w,
- Statistical_Significance(p) (12)

Each element is meticulously crafted to meet specific criteria imperative for proficient pattern recognition.
The dimension of unexpectedness evaluates how significantly a pattern challenges existing assumptions
through the application of embedding-based similarity measures and an examination of logical
inconsistencies. Actionability assesses the ability of domain specialists to extract meaningful actions from



AMFUP: An Adaptive Multi-Modal Framework for Unexpected Pattern Discovery ... 120

the recognized pattern. Novelty ensures that the patterns in question have not been previously documented

by performing comparisons against historical pattern databases.

Evaluation of Contradiction Strength: In the assessment of patterns and beliefs, the computation of
contradiction strength encompasses several factors:

contradiction_strength(p, b)
= sim(4, X) - contradiction(B, Y) - support_factor(p, b) - context_ovetlap(p,b) (13)

This extensive approach guarantees that the identified contradictions possess significance rather than being
trivial. The antecedent similatity aspect utilizes MMPE embeddings to encapsulate semantic relationships
that extend beyond mere lexical alignment. The consequent contradiction aspect assesses the extent of
logical opposition between the results.

Computational Complexity and Efficiency: The algorithm achieves significant computational
improvements through several optimization strategies. The overall time complexity is O(nlogn +
k log k + d?) where n represents pattern count, k denotes belief count (typically k < n), and d indicates
parameter space dimension. This represents substantial improvement over existing O(n?) approaches that

require pairwise pattern comparisons.
4 | Experiment
4.1 | Experimental Setup

4.1.1 | Datasets

We assess AMFUP across eight distinct datasets to illustrate its effectiveness and scalability. Each dataset
poses specific challenges associated with the discovery of unforeseen patterns. In our study, we employ
four esteemed benchmark datasets obtained from the UCI Machine Learning Repository [22], the Adult
Income dataset, which comprises 32,501 instances and 14 features [23], the Breast Cancer Wisconsin
dataset, consisting of 286 instances and 9 features [24], the Credit Approval dataset, containing 690
instances and 15 features [25] and the Mushrooms dataset, which encompasses 8,124 instances and 22
features [20]. These datasets are established benchmarks that facilitate comparative analysis with prior
research within the realm of unexpected pattern discovery [8], [9], [5]. The study integrates four additional
datasets: the Credit Card Fraud Detection dataset, sourced from Kaggle, which comprises a total of 284,807
records along with 30 attributes [27], the Web Server Access Logs obtained from the NASA Kennedy Space
Center, which includes 280,000 hits that exhibit discernible temporal patterns [28], the Intel Lab Sensor
Network dataset, which consists of 500,000 readings collected from 15 sensors and the Social Media
Engagement dataset drawn from the Twitter API sourced from Kaggle , encompassing 1 million posts
together with associated text and metadata. These datasets illustrate the existence of concept drift and multi-
modal features, both of which are essential for evaluating adaptive capabilities. All datasets underwent
preprocessing utilizing standard methodologies that have been previously established in unexpected pattern
mining research [3], [24]. Continuous attributes were discretized through equal-frequency binning,
comprising 5 bins. Missing values were addressed through mode imputation for categorical variables, and
temporal attributes were partitioned into significant intervals, in accordance with the methodology
proposed by Padmanabhan and Tuzhilin [5].

4.1.2 | Evaluation Metrics

We establish four comprehensive metrics to evaluate the quality of unexpected pattern discovery, drawing
upon well-established interestingness measures found within the literature [3], [4]:

Pattern Quality Score (PQS): A composite metric combining four dimensions following Silberschatz and
Tuzhilin's framewotk [3]: PQS =04-U+03-4+0.2-N+0.1-1. PQS is computed as a weighted
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combination of four fully automated criteria. Unexpectedness U is quantified through embedding-based
contradictions between mined patterns and adaptive beliefs. Actionability A is measured using statistical
utility indicators, such as lift and probability deviation. Novelty N captures non-redundancy by evaluating
the distance between newly discovered patterns and historical archives in the embedding space.
Interpretability I is computed using structural simplicity metrics based on the rule length and complexity.
Importantly, all components are derived automatically without requiring expert annotation or human

scoring.

Parameter Sensitivity Index (PSI): Measures robustness across parameter variations [22]: PSI =

o (Performance . o
I(Performance) here lower values indicate greater stability.
U(Performance)

We implemented the AMFUP framework using Python and conducted all experiments on the Kaggle
platform, which provided a convenient and reproducible online execution environment with access to
datasets. Kaggle offers optional hardware accelerators, such as NVIDIA T4 GPUs and TPUs, which were
utilized solely to reduce training time for deep learning-based components including PyTorch- or
TensorFlow-based implementations of MMPE and DBA. Importantly, the proposed AMFUP framework
does not rely on specialized high-end GPU clusters or extensive high-performance computing
infrastructure; hardware acceleration is not a functional requirement but rather an optional optimization for
improving runtime efficiency. For statistical modeling and optimization components, we employed scikit-
learn for APL and model tuning, along with Pandas and NumPy for efficient data preprocessing and
handling. All experiments were executed within Kaggle's interactive notebook environment, enabling end-
to-end execution of the AMFUP pipeline, real-time analysis of results, and reproducibility of experiments.

4.1.3 | Baseline Methods

We conduct a comparison with five exemplary methodologies that encompass a range of different

theoretical frameworks:

The UCRP-miner [8] serves as the forefront of contemporary advancements in the realm of closed
pattern-based unexpected pattern discovery. We have executed the original algorithm while adhering to the
parameters set forth in the foundational paper, namely, MaxSup = 0.1, MinSup = 0.001, and a similarity
threshold of 0.6.

DBSCAN-based Clustering follows the methodology of Bui-Thi et al. [9] , employing a density-based
clustering technique to discern beliefs and outliers classified as anomalous patterns. The parameters utilized
are eps=0.5 and minPts=5, accompanied by binary feature encoding as detailed in their implementation.

The Belief-Driven Method adopts the foundational approach established by Padmanabhan and Tuzhilin
[5], necessitating the manual specification of beliefs in accordance with their ZoomUR algorithm.

Deep Auto Encoder Baseline: This contemporary deep learning methodology employs a three-layer
encoder-decoder framework (with a latent dimension of 64) for the identification of pattern anomalies,
adhering to established norms in the field of neural anomaly detection [24].

Random Forest Outlier Detection [25] is an ensemble-based approach that utilizes isolation scores for
the identification of unexpected patterns. This method has been implemented using scikit-learn with its

default parameters.

4.2 | Overall Performance Analysis

Tablel shows a comprehensive comparison of performance with regarding all datasets and metrics
analyzed. The AMFUP model demonstrates considerable improvements across all evaluation criteria.
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Table 1. Comprehensive performance compatison.

Method PQS t PSI | Runtime (min) |
UCRP-miner [8] 0.72 0.31 45
DBSCAN + Clustering [9] 0.68 0.45 38
Belief-Driven [5] 0.75 0.52 52
Deep AutoEncoder [24] 0.61 0.28 22
Random Forest [25] 0.59 0.33 18
AMFUP 0.96 0.12 12

Statistical significance was established using paired t-tests with Bonferroni correction (p < 0.001 for all
comparisons). AMFUP achieves a 28% improvement in pattern quality over the best baseline while
reducing computational time by 73.3%.

4.3 | Scalability Analysis

Runtime Scalability: Figure 2 illustrates the computational efficiency of AMFUP across varying dataset
sizes. In contrast to baseline methods that exhibit a complexity nearing O(n?), AMFUP consistently upholds
O(n log n) scalability by employing effective neural network batching and enhanced belief update
mechanisms, in accordance with the principles of scalable pattern mining [16].

Parameter Sensitivity: AMFUP demonstrates minimal parameter sensitivity (PSI = 0.12) when compared
to baseline models (PSI range: 0.28-0.52). This signifies a strong performance across varied parameter
configurations without the necessity for extensive adjustments, which represents a significant benefit over
current methodologies [8], [9].

The experimental findings confirm the efficacy of AMFUP across various datasets, all while preserving
computational efficiency and necessitating minimal parameter adjustment, attributes that are crucial for
practical implementation in real-wotld scenarios.

Methods
AMFUP
100 —e— UCRP-miner
—e— DBSCAN + Clustering
—8— Random Forest
—e— Deep AutoEncoder
80

@
[=]

Runtime (Minutes)

&
=}

20

0 200 400 600 800 1000
Dataset Size (K)

Figure 2. Runtime Scalability Comparison Across Dataset Sizes.

5 | Conclusion and Future Work

5.1 | Summary of Contributions

This paper presents AMFUP (Adaptive Multi-Modal Framework for Unexpected Pattern Discovery), an
innovative approach that tackles essential shortcomings present in current unexpected pattern mining
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techniques. Our framework offers four significant methodological enhancements that elevate the

advancements within knowledge discovery systems.

Methodological Innovations: First, we have established an adaptive belief framework that systematically
adjusts to variations in data patterns, effectively addressing the constraints associated with static belief
systems employed in current methodologies, including UCRP-miner and clustering-based techniques. In
contrast to conventional approaches that depend on fixed belief systems derived from past data, DBA
component perpetually refreshes beliefs in response to newly available evidence, while ensuring stability
through the implementation of decay factors and strategies for drift compensation. Second, we have
implemented MMPE, a system that adeptly captures semantic, structural, and statistical relationships among
patterns via dedicated neural network branches. This advancement effectively mitigates the significant
constraint of current methodologies that are restricted to either lexical or binary representations of patterns.
Consequently, our framework can recognize that semantically equivalent patterns, such as milk — bread
and dairy — bakery, ought to be regarded in a similar fashion, notwithstanding their lexical variances. Third,
we have formulated an APL system that obviates the necessity for manual parameter adjustments, a feature
that complicates current methodologies. Conventional methods require extensive manual modifications to
similarity thresholds, support values, and clustering parameters; in sharp contrast, our meta-learning
optimization autonomously identifies the most suitable parameter configurations tailored to each dataset.
Finally, we have introduced a unified theoretical framework, supplemented by a complexity analysis that
illustrates a performance of O (n log n) as opposed to the O(n?) performance associated with existing
methodologies.

Our comprehensive evaluation encompassing eight diverse datasets demonstrates that AMEFUP achieves the
highest Pattern Quality Score (PQS) of 0.96, representing a 28% improvement over the best baseline
method (belief-driven). Concurrently, AMFUP establishes itself as the fastest method (runtime: 12 min),
achieving a substantial 73.3% reduction in runtime compared to UCRP-miner (runtime: 45 min) and a
33.3% reduction compared to Random Forest (runtime: 18 min). AMFUP achieves a 43.28% increase in
PQS and a 46.68% reduction in execution runtime compared to the average performance of the baseline
methods.

5.2 Limitations and Future Directions

Although the AMFUP demonstrates consistent improvements over baseline methods, its performance is
influenced by practical constraints related to the data scale and computational resources. The multimodal
embedding and belief adaptation components introduce additional computational overhead, which may
affect the runtime performance on extremely large datasets or limited hardware configuration.Furthermore,
although the framework is robust to moderate parameter variations, extreme settings or highly constrained
environments may require further optimization to maintain efficiency. Future work will extend the
AMFUP in three directions. First, the performance of the model will be evaluated under extreme-scale data
and heterogeneous hardware settings, exploring scalability limits and resource-aware optimizations, as well
as conducting a deeper sensitivity analysis to distinguish true methodological gains from parameter-
dependent effects. Second, more advanced belief modeling within the DBA module will be investigated,
including robustness to incomplete or biased initial beliefs through uncertainty-aware initialization, multi-
user belief fusion, and confidence-weighted updates, with the possibility of lightweight expert feedback for
calibration while maintaining the automation. Third, the AMFUP will be adapted for streaming and
dynamic environments by developing online versions of the MMPE and DBA to support real-time
embedding and belief updates under concept drift without full retraining.
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