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Abstract

Sentiment analysis, especially in the multilingual sentiment analysis (MSA) context, can be complicated owing to
the nuances, sarcasm, diversity in languages, culture, and data sparsity involved in identifying, discerning, and
interpreting sentiment. In this paper, we review and summarize the progress and current work being undertaken in
Multilingual Sentiment Analysis, with a focus on modern advancement and implementation of state-of-the-art deep
learning Transformer models, and ensemble learning methods, in sentiment classification tasks. We review the use
of well-known and powerful Transformer architectures such as XLM-R, LaBSE, MPNet, mBERT, DistilBERT,
and their variations. These models can perform well to capture cross-lingual contextual meanings in relation to
sentiment. We also review the literature in their use of ensemble methods in sentiment classification tasks, for
example, stacking/bagging/boosting/voting approaches, as a contributions to gain higher accuracy, robust
predictions, and generalizability of those predictions from the literature. The review consequently presents a
summary of key findings from previous studies on the applicability of transformer-based and ensemble models in
multilingual sentiment classification and their related advantages and disadvantages when used on multilingual
datasets. We highlight the advantages of using ensemble techniques, that various a group of models can be
optimized to have both collective and individual gain higher performance over a single learner. We also include
challenges and potential limitations in the literature, such as cost of computing through complex ensemble, and
diversity among base models. The review acts as a synthesis and definitive summary overview of the state of the
art, and aims to provide future research directions for employing advanced deep learning techniques and their
ensemble techniques to understanding complexities of multilingual sentiment analysis.
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1 | Introduction

1.1 Motivation and Background

Sentiment Analysis (SA) is a central task in Natural Language Processing (NLP) and the objective is to extract
subjective facts such as opinions, feelings, and attitudes from text [1]. Its significance crosses various domains,
primarily in business intelligence, where SA plays a crucial role in customer feedback analysis and brand
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reputation management [2]. SA is also heavily applied in social media monitoring in order to recognize trends
in public response and opinion towards events [3]. Moreover, it assists in market research since it allows
businesses to understand consumers likings, and assists in monitoring public opinion by governments and

tirms who desire to gauge response from society [4].

The growing interconnectedness brought on by globalization has intensified the demand for Multilingual
Sentiment Analysis (MSA), as social media platforms like Twitter host vast volumes of user-generated content
in countlesslanguages [5]. This makes it essential to develop sentiment analysis systems that can understand
and interpret sentiment in a linguistically and culturally diverse landscape [6]. These capabilities are essential
in actual applications like global market trends and public sentiment tracking during crises, where
comprehension needs to be derived despite linguistic differences [7]. Twitter sites also require multimodal
content processing models (e.g., text and images), which again requires advanced techniques in MSA [8].
Lastly, automated summarization of multilingual content with no alteration of sentiments remains a
technological issue that must be addressed for sentiment fidelity [9].

1.2 | Problem Statement

Multilingual Sentiment Analysis (MSA) inherently involves challenges due to extensive linguistic variation,
including complex grammatical structures, inflections, and word order differentials that highly differ among
languages [10]. These complexities have a tendency to lead to tokenization and embedding issues, which
undermine model accuracy, particularly with very morphologically dense languages [11]. The use of high-
resource monolingual models directly for low-resource languages results in performance degradation and
culture misinterpretation due to linguistic and context mismatches [12]. Multilingual models also suffer from
the ” curse of multilinguality” where the performance detetiorates with the addition of more languages due
to the insufficient model capacity and interference [13]. These problems can be solved by adaptive fine-tuning
and strategic language pairing, both of which have been proven to significantly improve sentiment
classification performance in multilingual settings [14].

The expression of emotions varies greatly between languages and cultures, which poses difficulty in analyzing

multilingual emotions with cultural variation and sensitivity of emotional perception [15]. For example, irony
and ridicule are interpreted differently by different cultural contexts, and Chinese speakers are less likely to
discover ridicule of American speakers because of social and cultural constructs such as distance of power
[15]. Emojis also complicate, as they can be interpreted differently depending on language, culture, and age,
and have been found in studies of WeChat users to have inconsistent interpretations among different
demographic groups [16]. Additionally, in the case of Arabic social media users, emojis have been employed
to indicate ironic or sarcastic tone, and hence are an important element for sentiment representation on the
Internet [17]. These problems underscore the need for sentiment models that can account for cultural,
contextual, and symbolic variation in expression in order to ensure proper interpretation across multilingual
information sources [15],[16],[17].

The practical problem of data scarcity and resource asymmetry between languages is a significant disincentive
to the development of quality NLP models for low-resource languages [18]. Overreliance on high-resource
languages in pretraining exacerbates the situation, with the outcome that model transfer to languages with
limited digital resources becomes difficult [19]. Practical and ethical concerns such as data quality and
appropriateness of annotation add to the difficulty of creating representative datasets for such languages [20].
To counter such imbalances, culturally responsive and linguistically adaptive solutions, including the multi-
agent translation system for low-resourced communities, have been proposed [21]. systems such as the
cheetah, which supports more than 500 African languages, show the potential of large-scale adaptive
technologies to improve linguistic diversity in NLP [22]. These efforts underscore the urgent need for
comprehensive Al solutions that respect cultural sensitivities and provide NLP capabilities to all language
communities [20],[21],[22].
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1.3 Existing solutions using Deep Learning and Ensemble Methods

The recent breakthroughs in deep learning, i.e., the Transformer-based models such as BERT, RoBERTa,
XLM-R, and LaBSE, have significantly improved multilingual natural language understanding by capturing
fine-grained contextual interactions between languages [23]. For example, the XLLM-V model was introduced
to solve the vocabulary bottleneck of multilingual masked language models, which has led to remarkable
performance gains in named entity recognition and natural language inference tasks, especially in low-resource
settings [24]. Moreover, it turns out that Labsi exceeds many other multi -language models in the tasks of
aligning words through multiple linguistic pairs, which enhances acting across languages and the quality of
alignment [25].

Ensemble learning is a strong machine learning paradigm that employs ensembles of a number of base
models to make the overall predictive performance better, and it has gained much attention in the last decade
due to its applications in many fields. Rather than employing a single learner, ensemble methods such as
bagging, boosting, stacking, and random forests combine the predictions of multiple different models to
generate more precise, stable, and generalizable outcomes [26]. This technique is particularly valuable in cases
where individual models are bound to overtfit or underfit, as ensemble techniques can combat high variance
while keeping bias to a minimum as well [27]. Bagging (bootstrap aggregating), for instance, creates multiple
copies of a training set using random sampling and averages their predictions to stabilize learning, while
boosting is used to train weak models sequentially with additional focus on previously misclassified ones to
improve model accuracy. Besides, stacking is learning a metamodel to determine how to combine the
prediction of a collection of base learners best and reflects a general and usually superior ensemble structure.
A report by Almotiri et al [28]. encapsulates how such ensemble deep learning techniques are applied in real-
wortld tasks ranging from medical diagnosis to cybersecurity, where they excel single models in accuracy and
reliability consistently [28].

The ensemble methods discussed in this thesis tend Bagging, Boosting, Stacking, and Max Voting each
petrforms a different role in the performance enhancement of the model in a different way. Bagging, or
bootstrap aggregating, builds multiple instances of a model on random subsamples of the training data,
thereby variance is minimized and resistance to overfitting is enhanced [29]. Iterative boosting focuses on the
errors of the eatlier models, optimizing the training process to minimize the bias and increase predictive
capability, which is particularly effective in the case of complex data distributions [30]. Stacking goes a level
further and trains a meta-model on a higher level that learns to optimally combine the predictions of several
diverse base learners, capturing intricate dependencies and resulting in improved generalization [31]. Max
Voting, one of the simplest yet powerful methods, consolidates predictions by selecting the class that receives
the highest votes among different models, which matches a decision by consensus intuitively [32].

2 | Background and Related Work

2.1 Challenges in Multilingual Sentiment Analysis

Sentiment Analysis (SA) is the computerized process of sentiment detection and categorization of
sentimentexpressing text, broadly classifying it as positive, negative, or neutral, a shared objective of most
natural language understanding applications [33]. SA usage spans from coarse document-level classification
to finer-grained approaches like aspect-level sentiment analysis, which is focused on particular entities or
attributes named in the text [34].

Document-level sentiment analysis is rather enabled by the understanding of long-range dependencies and
context, such as in models trained to process long documents [35]. Cross-language sentiment analysis models
also indicate the need for knowledge transfer from high-resource languages to low-resource languages, hence
the practical applicability of SA in multilingual settings [36].
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Sentiment Analysis (SA) plays an important role in today’ s business by enhancing customer experience
management and informing market research, as can be seen through Flight Centre’ s utilization of Al in
analyzing customers’ sentiment and tailoring services to increase satisfaction [37]. In politics, SA is applied
in election polling and forecasting of elections, as a study in 2024 on Mauritian elections illustrated positive
media sentiment being associated with increased voters”  support for parties [38]. Similarly, during the 2024
Indonesian presidential election, social media sentiment clustering of content highlighted issues of concern
to voters and campaign priority areas [39]. SA is used in healthcare to analyze patient opinions, and
probabilistic sentiment analysis has found beneficial emotional patterns in patient-doctor interactions that
helped improve clinical services and outcomes [40].

Monolingual sentiment analysis (SA) would typically be interested in sentiment analysis in a single language,

benefiting from language-specific syntactic and semantic features to improve performance [41]. Multilingual
SA, however, must address the increased complexity caused by linguistic heterogeneity, for example,
differences in word order, idiomaticity, and sentiment markers [42]. This is exacerbated by cultural nuances
in sentiment expression, which require models to become culture-aware and generalize over languages [43].
Thus, developing effective multilingual SA systems is accompanied by the requirement of sophisticated
architectures and approaches, such as transfer learning or ensemble methods, to efficiently cope with cross-
linguistic variation [44].

Linguistic challenges in multilingual sentiment analysis (SA) are brought about by significant differences in
syntax, morphology, idiomatic phrases, and vocabulary across languages, rendering direct model transfer
difficult [45]. Handling idiomatic phrases also adds complexity because these do not typically translate word-
for-word and vary significantly across languages [46]. Moreover, adaptation of models to correctly interpret
multiword expressions remains a key challenge under multilingual scenarios [47]. Vocabulary disparities and
domain-specific terminology between languages also undermine model transfer and performance
effectiveness [48].

Multilingual sentiment analysis is faced with cultural and context problems due to variations in sentiment
expression across cultures and languages [49]. Sarcasm and irony are especially difficult to understand because
their meanings are extremely culture and common knowledge-dependent, which have huge variations among
communities of languages [50]. Figurative language such as metaphors and idioms are other difficulties in
sentiment classification whose interpretations still significantly depend on culture [51]. Furthermore, emojis
and colloquial language bear various sentiment subtleties that depend on cultural background and language

use, and hence perpetual interpretation of sentiment becomes challenging [52].

Resource scarcity remains one of the most difficult challenges in advancing multilingual sentiment analysis,
particulatly for low-resource languages whose annotated datasets are limited or nonexistent [53]. Unbalanced
resource availability heavily favors languages like English, French, and Spanish while leaving many others with
insufficient data to train useful models that, in turn, constrain the generalizability and fairness of NLP systems
[7]- The cost and effort involved in creating high-quality multilingual datasets that cover the needs of native
speakers, cultural understanding, and strict annotation guidelines render it extremely difficult to scale efforts
to the world” s thousands of languages. Furthermore, differences in linguistic structures and cultural context
enhance the difficulty in transferring models learned from high-resource languages to low-resource settings
without performance degradation [54]. To fight against these issues, recent studies leverage techniques such
as transfer learning, cross-lingual embeddings, data augmentation, and adaptive pretraining to utilize existing
resources more efficiently and be less dependent on large annotated corpora [7].

2.2 Deep Learning for Natural Language Processing

The evolution of Natural Language Processing (NLP) has progressed significantly from rule-based systems
and traditional statistical approaches to deep learning. The early n-grams and Hidden Markov Models were



95 Elhadidi et al. | Int. j. Comp. Info. 7 (2025) 91-103

afflicted with the limitations of an inability to model long-range dependencies and contextual meaning [55].
The breakthrough in this context came with Recurrent Neural Networks (RNNs) enabled the modeling of
sequential data, although they were beset with issues like vanishing gradients [56]. This challenge was eased
by Long Short-Term Memory (LSTM) networks, which could store information for longer sequences through
memory gating mechanisms [56]. Meanwhile, CNNS, which were initially applied widely applied in the
computer vision, to work well in text classification problems because they had the ability to capture local
patterns in data [57]. Transformers revolutionized NLP with autonomous mechanisms that allowed parallel
to address the chain and capture of global context more efficient [58]. This paved the way for very successful
models pre-trained like BERT, which has set new standards on the latest model on a wide range of NLP tasks
[59].

The Transformer model, marked an important shift in natural language processing as it eliminated recurrent
and convolutional components and relied solely on the self-attention mechanism [58]. This enables the model
to dynamically weigh the importance of each word in a sentence relative to every other, making it more
effective at capturing long-range dependencies [58]. Follow-up work has also added to this foundation, which
replaces the default dotproduct self-attention with a feed-forward network for the sake of increasing the
expressiveness of token relationships, resulting in better performance on language understanding tasks [60].
Also the Learnable Multi-Scale Wavelet Transformer, a novel architecture replacing self-attention with a
learnable wavelet transform module, enabling efficient representation of both local and global contexts and
improving computational scalability [61].

2.3 Transformer-Based Multilingual Models

BERT (Bidirectional Encoder Representations from Transformers) is a transformer-based language model
that uses Masked Language Modeling (MLM) and Next Sentence Prediction (NSP) pre-training to
comprehend deep bidirectional text representations [62]. Its structure has been applied in various domains,
including traffic crash severity type classification, which proves its capability in processing unstructured
textual data [62]. The multilingual version, mBERT, extends the reach of BERT to over a single language by
being trained on multilingual corpora with the same MLM and NSP objectives [63]. mBERT has been applied
in recent studies in the field of cross-language text generation across Chinese and English, and it was proven
effective in multilingual settings. Besides that, mBERT was applied in multilingual propaganda detection,
showcasing its application potential in identifying biased information across multiple languages [23].

RoBERTa (Robustly Optimized BERT Pretraining Approach) is an improvement over the baseline BERT
model in that it eliminates the Next Sentence Prediction (NSP) task, adds dynamic masking, and is trained on
much larger datasets such as Common Crawl with attendant increases in performance on downstream NLP
tasks [64]. XLM-R, the multilingual variant of ROBERT?4, builds on these breakthroughs by training on 2.5TB
of pre-filtered Common Crawl data across 100 languages with SentencePiece tokenization to handle
multilingual input efficiently and substantially outperform past multilingual models like mBERT and
GigaBERT on cross-lingual tasks [65]. More recent advancements such as XLM-V solve the vocabulary
limitation in pretraining multilingually by having a very much larger shared vocabulary with far improved
performance on question answering and natural language inference in high- as well as low-resource languages

[24].

DistiIBERT is a smaller, more streamlined version of the BERT model, which was developed through a
process of knowledge distillation, that reduces the size of the base model while preserving over 95% of its
performance on language understanding benchmarks. The reduction in model size 40% fewer parameters and
60% faster performance makes the model very suitable to deploy in environments where computational
resources are limited [66]. The multilingual variant, DistilBERT-base-multilingual-cased, takes this light-
weight design to over 100 languages, making it a practical choice for multilingual NLP tasks where employing
full-size models like mBERT or XI.LM-R can be computationally expensive [67]. Ongoing research has shown
the utility of DistilBERT in multilingual contexts; e.g., it was successfully employed in GenAl Detection Task
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1 in classifying human vs [68]. Al-generated text with strong performance across domains. Similarly, in low-
resource scenarios such as hate speech detection in low-resource languages, the model demonstrated
competitive performance with significant savings in training and inference costs [69]. In shared tasks such as

SemEval-2024, DistilBERT s compactness allowed it to handle multilingual, multi-generator,

and cross-domain challenges with high efficiency and accuracy. All these attest to its usefulness as a practical
option for real-world NLP use cases needing fast, accurate, and multilingual processing on constrained
hardware [70].

LaBSE (Language-agnostic BERT Sentence Embedding) is designed to generate language-agnostic sentence
embeddings by a shared encoder framework using dual BERT models to encode parallel sentences in two
languages simultaneously [71]. Its training objective, Translation Language Modeling (TLM), encourages the
model to align semantically similar sentences across languages by predicting masked tokens conditioned on
cross-lingual context [71]. LaBSE excels at cross-lingual tasks such as semantic textual similarity and bitext

mining, demonstrating its ability to generate high-quality multilingual sentence embeddings [71].

MPNet (Masked and Permuted Pre-training for Language Understanding) is a combination of masked
language modeling and permuted language modeling to enhance contextual dependency capture and has been
shown to yield stable results on a variety of NLP tasks [72]. Its application to multilingual sentiment analysis
was enhanced by combining it with GRU layers to accomplish improved sequence modeling, as demonstrated
in recent research [73]. The distilled multilingual Universal Sentence Encoder (mUSE-dist) offers a fast yet
powerful model for semantic similarity and sentiment analysis of languages that is especially beneficial in
cross-lingual benchmarks [74]. Similarly, XLM-R-dist, the distilled XLM-RoBERT?4, retains multilingual
capability at significant computational costs, which makes it very suitable for low-resource and real-time
applications [74]. These models collectively reflect improvement in efficient multilingual language
understanding systems [73], [74].

2.4 Ensemble Learning Techniques

The Ensemble learning technique of machine learning is to train a set of models, known as basic learners,
and combine their predictions to produce a more accurate and powerful final prediction [75]. Group learning
is based on the principle that different models learn different patterns or representations of data, and their
combination helps reduce generalization errors [76]. This approach can be realized through techniques such
as bagging, boosting, or stacking, all of which combine models in some manner to take advantage of their
strengths [77]. Base learner diversity is critical because the ensemble’ s success is predicated on the degree
to which the models make uncorrelated errors, which can be achieved through model architecture differences,
training data differences, or feature selection differences [78]. Unless there is sufficient diversity, the ensemble
may end up capturing the same biases and weaknesses of the constituents, thus failing to achieve noteworthy
performance improvement [79].

Bagging or Bootstrap Aggregating is an ensemble technique that improves the performance of predictive
models by reducing variance using the ensemble of many base learners on different bootstrap samples of the
training data [80]. It goes through random sampling with replacement from the original dataset, generating a
different model for each sample, and making predictions through majority voting in case of classification or
averaging in case of regression to derive their outputs [81]. A common implementation of this technique is
the Random Forest algorithm, which constructs numerous decision trees using both bagging and random
feature selection to ensure diversity and precision [82]. Random Forests and other ensemble methods were
applied to groundwater potential mapping of eastern India, demonstrating the applied benefit of bagging on
real-world environmental data simulation [83], [84].

Boosting is a sequential ensemble learning algorithm where multiple weak learners are trained in sequence,
each subsequent model more strongly focusing on those data points which were classified incorrectly by
earlier models so that the system can learn increasingly from its errors and reduce bias [85]. This approach is
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particularly robust when excessive bias is an issue, as it constructs a powerful learner gradually well-
performing on challenging data through optimizing for accuracy at each step [86]. AdaBoost is a typical
boosting method, which reweights training instances such that future models give more importance to those
earlier misclassified examples, hence targeting the more challenging parts of the dataset [86]. Gradient
Boosting is an extension of this idea by optimizing a specific loss function with gradient descent, allowing for
more freedom and in some cases performance [85]. XGBoost, a advanced version of Gradient Boosting,
includes regularization to prevent overfitting and parallel processing to be efficient, thus it is favorable for
large-scale and high-dimensional applications like IoT security [87]. Use of boosting methods like Gradient
Boosting as an approximation to high-level models like Markov models shows how they can achieve precision
in prediction with low computational costs [85]. Further, Explainable Boosting Machines (EBMs)

offer a more interpretable form of boosting that enjoys high precision while enabling transparent model
predictions[80].

Stacking, otherwise known as stacked generalization, is a more sophisticated ensemble learning technique that
operates in the framework of two levels: level one consists of a set of base models trained individually on the
same data, and level two is a meta-model trained on the prediction made by these base models [88]. This
architecture allows the meta-model to learn to integrate output from various learners in an optimal-possible
manner to lead to predictive performance greater than theirs individually [89]. In a 2024 research study, this
concept was demonstrated by applying

stacked generalization to genomic selection, where it could integrate outputs from various models in a useful
manner to generate more precise genomic predictions [88]. Similarly, in image segmentation, researchers used
LightGBM and SVM as weak learners and trained a meta-model to aggregate their predictions in an attempt
to achieve much superior accuracy in segmentation [89]. In medicine, a 2025 experiment utilized stacked
generalization to forecast psychosocial maladjustment in patients of acute myocardial infarction and showed
that stacking offered more predictive accuracy than individual models [90].

Ensemble voting strategies in ensemble learning combine predictions from different classifiers to improve
decision and robustness. Hard Voting involves each base model voting for the class label, and the decision
being the highest voted class; this was used effectively in forecasting frost, where a voting committee of
models improved predictability of the forecast [91]. Soft Voting, on the other hand, is taking the average of
predicted probabilities from all base models and selecting the class with the maximum average probability; in
credit card fraud detection, this approach was employed and obtained increased accuracy through the
ensemble of predictions from XGBoost, Random Forest, and MLP models. Max Voting is a type where the
highest individual confidence score across all all models is picked; an optimized weighted-voting scheme
similar to max voting was used in fake news classification, allowing strong predictions with high confidence
to determine results [92]. Each method has its limitations and benefits: hard voting is strong to outliers and
simple but may lack prediction confidence; soft voting is probabilistically polished but will only be good if
the models are properly calibrated; max voting is based on surefire decisions but can be influenced by

overconfident errors [93]. These voting heuristics are strong to generalizability, depending on task type and
the diversity of the involved models [91], [92], [93].

2.5 RelatedWork in Multilingual Sentiment Analysis and Ensembles

Transformer models such as XILM-R, LaBSE, MPNet, XILM-R-distilled, mBERT, DistilBERT, and mUSE-
dist have played an important role in multilingual sentiment analysis, especially in handling multiple languages
and lowresource settings [94]. The models work efficiently across languages with challenging morphology,
with XLM-R being inclined to outperform others by achieving accuracy of more than 88% across different
language settings, which emphasizes the relevance of fine-tuning techniques for under-resourced languages
[94]. Experiments also showed that the choice of text summarization method affects sentiment classification;
extractive summarization preserves sentiment more effectively than abstractive summarization, especially in
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Finnish, Hungarian, and Arabic [9]. Moreover, in lowresource languages like Bengali, ensembles of
Transformer models mBERT and XILM-RoBERTa set the new state of the art with accuracy and 1 measures
nearly reaching 96%, proving that ensemble models are effective [95]. For languages like isiZulu and isiXhosa,
African languages, there is good performance by models like mBERT and XLLMR,

but require further fine-tuning and data augmentation for languages like Setswana and Sesotho to achieve
similar results [95]. Lastly, zero-shot cross-lingual sentiment analysis tests picked up XLM-R as performing
better than all other models across the Czech and French languages consistently, with an observation of a
compromise between inference time and accuracy where simpler linear strategies can be used as a faster
substitute [96].

Recent studies have demonstrated the effectiveness of ensemble techniques in NLP and sentiment analysis
in handling difficult languages like Arabic. One study combined AraBERT embeddings with a Voting
Ensemble classifier based on both character-level and word-level features, achieving an F-score of 73.98%,
showing the benefit of feature level fusion for Arabic sentiment analysis [97]. ensemble transformer-based
model that merged multilingual (XLM-T) and monolingual (MARBERT) models for dialectal Arabic
sentiment classification with improved performance over the state-of-the-art by an average accuracy of 90.4%
across multiple datasets [98]. In spite of the dominance of ensemble techniques in sentiment analysis, it is
surprising that there is a strong research gap in carrying out systematic large-scale comparative studies
comparing different modern ensemble techniques with strong focus on different Voting techniques such as
Max Voting with traditional techniques such as Bagging, Boosting, and Stacking in multilingual sentiment
analysis with state-of-the-art Transformer architectures. Most recent studies focus on either monolingual
settings or some types of ensemble without thorough comparison of various methods and languages. The
lack of serious benchmarking constrains our understanding of the ensemble methods that optimally sacrifice
accuracy, robustness, and computational efficiency for any language and dataset. Therefore, extensive and
complete investigation of these ensemble approaches is necessary to assist practitioners and researchers

intending to use the highest-performing models for real-world multilingual sentiment analysis tasks.

3 | Conclusion

This review has provided an overview of the multidimensional domain of Multilingual Sentiment Analysis
(MSA), addressing challenges associated with language diversity, cultural nuances, and limitations in data
resources. We have reviewed literature focused on the application of advanced deep learning techniques,
specifically Transformer models such as XLM-R, LaBSE, and their variants, as well as specific ensemble
learning forms. The review also discussed how significant leaps in the capture of multilingual context occurred
with Transformer models. Similarly, reviewed studies have shown that ensemble approaches, such as bagging,
boosting, stacking, and voting, provide a compelling strategy for improving predictive performance and
backend learning in MSA by aggregating knowledge across multiple base learners. In the review of surveyed
literature, ensembles (especially Max Voting) are both effective and computationally efficient, which matters
when strong base learners are available. More complex methods such as boosting and stacking could achieve
better accuracy, but incorporate computer challenges for valuable assessments. Despite the progress
acknowledged in this review, there are still challenges to overcome, especially with data availability in low-

resource model approaches and embedding cultural and idiomatic knowledge within the model.

In summary, from the literature reviewed, there is an agreement that both Transformer architectures and
ensemble learning approaches are important for MSA. The combination of the two approaches holds future
capabilities for more accurate and robust sentiment analysis systems which are more useful for language and
human diversity. This review highlights and organizes much of the recent research in MSA and new contexts
for implications of studies for researchers and practitioners. Finally, new directions with MSA technologies

in the future are recommended as well; context in this field has not been introduced.
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