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1 |Introduction    

Emotions play a crucial part in day-to-day living as they can influence people's articulation, impressions, and 

decisions. Due to the quick growth of artificial intelligence, affective computing has emerged as a hot area of 

research for the human-computer interface, with applications spanning from driver fatigue detection [1] and 

autonomous control systems [2] to healthcare [3]. Most recent research on emotion recognition has centered 

on analyzing body language, voice patterns [4], and facial expression analysis [5]. However, these methods 

may face difficulties in accurately identifying emotional states, especially when people intentionally repress 

their emotional expressions. In light of limitations encountered with traditional emotion recognition methods, 

recent scientific investigations have pivoted towards the analysis of physiological signals by examining a range 

of intrinsic indicators, including skin temperature (SKT), heart rate (HR) [6], electrocardiography (ECG), 

electromyography (EMG), electrooculography (EOG), and electroencephalography (EEG) [7,8], this method 

aims to determine real emotional states. 

EEG is a complex time-series data set that is utilized in the clinical and psychiatric sectors to detect brain 

activity as well as to record and store EEG signals. Particularly in the last 10 years, the discipline of brain-

computer interface (BCI) has made use of EEG data to mimic human brain function. Automatic emotion 

recognition [9], is a crucial area of research in human-computer interaction, where we must recognize various 

emotional states using EEG signals. Two models—the discrete model and the dimensional model—are used 
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to study and classify various emotional states [10]. Six basic emotional states are included in the discrete 

model: fear, anger, disgust, surprise, pleasure, and sadness. Emotional states are separated into two-

dimensional areas known as valence and arousal by the dimensional model. The valence scale goes from 

depressed to joyful, and the arousal scale from bored to inspired. The interactions of valence and arousal 

spaces can be used to identify discrete emotional states [11]. The ideal BCI uses transitory EEG waves to 

detect the arousal or valence of an emotional state without explicit user input [12]. 

Different tasks are investigated in EEG emotion recognition including subject-dependent and subject-

independent tasks. Subject-dependent tasks tailor EEG emotion recognition to individual users by using the 

same subject's data for training and testing. Conversely, subject-independent models are designed to 

generalize across various subjects and aim to develop robust classifiers that perform well on new subjects 

without needing personalized calibration [12]. 

Several deep learning and machine learning techniques are utilized to address EEG recognition of emotional 

challenges. These methods typically consist of three stages: pre-processing, feature extraction, and 

classification. Before further analysis, the pre-processing step cleans the data from noise and artifacts. The 

feature extraction step is the main stage before implementing machine learning or deep learning models. Due 

to the complexity and nonlinear nature of EEG signals, effectively leveraging their characteristics to obtain 

more complementary and discriminative data representations is a challenge in EEG-based emotion 

recognition. Many existing methods in EEG signal analysis focus solely on temporal, spectral, or spatial 

aspects, often failing to comprehensively capture all three. Temporal analysis examines changes in signals over 

time. Spectral analysis assesses the power distribution across various frequency bands, while spatial features 

refer to the spatial distribution of EEG signals across different EEG channels. 

Moreover, approaches leveraging deep learning to enhance signal representation face limitations due to the 

high computational demands of such models [9]. Additionally, several methods employ window 

segmentations, with or without overlap, to increase the dataset size by treating these segments as distinct 

EEG signals with the same emotional state as the original. These segments can also be fed into a deep model 

to capture temporal data. However, these approaches often lose long-term dependencies, and overlapping 

can result in redundant information [13–15]. 

This work explores various machine and deep learning techniques used in EEG-based emotion recognition. 

It focuses on studies from the past five years and includes insights from relevant survey papers to provide a 

well-rounded overview of the field. The paper is organized as follows: Section 2 offers a detailed background 

and context for understanding the progress and applications in emotion recognition. Section 3 reviews recent 

research on machine and deep learning techniques, grouped by subject-dependent and subject-independent 

tasks, while also discussing the key challenges faced in these studies. Finally, Section 4 summarizes the main 

conclusions of this research. 

2 |Emotion Recognition Background    

Emotion recognition is a rapidly advancing field that intersects various disciplines such as psychology, 

neuroscience, and computer science. The ability to accurately identify and understand human emotions has 

profound implications for enhancing human-computer interactions, improving mental health diagnostics, and 

developing responsive systems in various applications, from entertainment to healthcare. In this chapter, we 

will discuss the fundamental concepts of emotions, the methods used to analyze and classify emotional states, 

and the techniques employed in emotion recognition. We will delve into the discrete and dimensional methods 

of categorizing emotions, explore the role of EEG in emotion recognition, and examine various EEG-based 

emotion recognition tasks and approaches. This comprehensive overview will provide the necessary 

background and context for understanding the advancements and applications in the emotion recognition 

field. 
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2.1 |Emotions 

Because humans are social creatures by nature, they rely heavily on alliances and partnerships of all kinds to 

survive in a world where resources are scarce. The ability to distinguish or comprehend Emotions that are 

significant to society in others and in ourselves, as well as to use them to guide and direct our social 

interactions, is essential to the development of these social partnerships. An individual's feelings and cognitive 

states are primarily correlated with their innate biological states, which are known as emotions. In essence, 

emotions are an internal assessment and response to perceived events resulting from interactions with 

different external stimuli [16–18]. Therefore, noticeable behavioral alterations caused by the emotional states 

encountered include changes to verbal intonations, body language, and facial expressions [19,20]. 

Studies and discoveries about emotions have captured people's interest for many decades. According to the 

most recent WHO figures, 970 million individuals worldwide had mental disorders related to emotions in 

2019. Depression and Anxiety were the most common disorders, with increases of 26% and 28% in just one 

year [21]. Considering the significance of studying and recognizing emotions, two representation methods are 

employed to analyze and classify various emotional states: the discrete method and the dimensional method 

[22–24]. 

2.1.1| Discrete Representation Method 

The discrete method comprises the following six basic emotional states: fear, anger, disgust, surprise, joy, 

and sadness [25]. Robert Plutchik expanded on this with his wheel of emotions, which includes eight 

primary emotions: fear, joy, sadness, trust, anger, surprise, anticipation, and disgust as shown in Figure 1 

[26]. 

2.1.2| Dimensional Representation Method 

The dimensional method offers a framework for recognizing the complexity and richness of emotional 

states, enabling a more in-depth analysis by dividing emotional states into dimensional spaces, typically 

two-dimensional (2D) and three-dimensional (3D) emotional space models [22–25]. 

 

 

Figure 1. Plutchik's Wheel of Emotions [26]. 

 



 Systematic Analysis of EEG Emotion Recognition: Subject-Dependent vs. Independent Approaches 

 

45

 

  
In the 2D emotional space model, emotions are classified along two axes: valence (V), which ranges from 

positive (Pos) to negative (Neg), and arousal (A), which indicates the level of activation from high to low. 

The ratings or values on the valence axis, which range from Pos to Neg, represent an individual's level of 

happiness or sadness. Similar to this, an activated state (excitement) is indicated by a high value on the 

arousal axis, whereas an inactivated state (calmness) is shown by a low value. The combination of valence 

and arousal spaces (V-A spaces) can be used to identify discrete emotional states as shown in Figure 2 

[25,27].  

Similarly, the 3D emotional space model expands on this by incorporating an additional dimension: 

dominance (D). The individual's level of dominant control over their emotional process is reflected in the 

dominant dimension. A user's emotional state (such as surprise, fear, etc.) is at a lower dominance level 

while they are under the influence of their surroundings. On the other hand, a user's emotional state 

reaches a greater dominance degree when they can manage their external surroundings. The 3D model 

maps emotions along the axes of valence-arousal-dominance spaces (V-A-D spaces), providing a more 

comprehensive representation of emotional states as shown in Figure 3 [28,29]. 

 

Figure 2. Valence-Arousal scale [25]. 

 

Figure 3. Valence-Arousal-Dominance space – N stands for negative; P stands for positive; H stands for high; L 

stands for low. The order of notions is mapped respectively to Valence, Arousal, and Dominance. E.g. PHH means 

positive valence-high arousal-high dominance [29]. 

 

It is essential to note that there is a one-to-one relationship between the discrete emotional states and 

particular places in the continuous dimensional state space. For example, the emotions of sadness 

and happiness are positioned in negative valence-low Arousal-low Dominance and positive valence-high 

Arousal-high Dominance respectively. 

 



   Elrefaiy, A.| Int. j. Comp. Info. 4 (2024) 53-67 

 

45 

2.2 |Emotion Recognition 

Emotion, a complex psychological state, manifests itself in both physical behaviors and physiological 

activities [30]. Emotion recognition involves identifying an individual's emotional state through their 

actions or physiological responses. For effective emotion research, quickly and accurately determining 

people's emotional states is essential to achieving a more natural and enhanced human-computer 

interaction. 

2.2.1| Emotion Recognition Techniques 

Over the last decade, significant efforts have been devoted to recognizing emotions by analyzing affective 

information obtained from various sources, including voices, neurophysiological devices’ signals, videos, 

and texts [19,20]. The core of emotion recognition models lies in employing statistical ML techniques 

including classification, clustering, or regression) to classify human emotions in real-time or offline. 

Therefore, this task is particularly a challenge due to the need to extract and leverage latent components 

within noisy data from multiple sources such as body language, text, eye look, voice, facial emotions, bodily 

movements, and bio-signals. 

Currently, assessing emotional states derived from physiological processes is a prominent topic in Affective 

Computing. Various psychophysiological studies have indicated dependencies between physiological 

processes and emotion cognition, although the exact order of these processes remains debated [31]. Some 

commonly utilized physiological modalities for detecting emotional responses include EEG, 

electrocardiogram (ECG), electrodermal activity, and electrooculogram [32–34]. Given that the autonomic 

nervous system is regulated and controlled by the central nervous system (the brain) during emotional 

processes, it is especially beneficial for research to directly use brain activity data (such as EEG) to evaluate 

emotional states and understand the mechanisms behind emotional cognition. 

2.2.2| Potential Research and Applications of Emotion Recognition 

Emotion recognition, especially EEG-based, offers a wide range of potential applications. For instance, 

the development of emotion-aware driver assistance technologies for vehicles is considered a promising 

way to improve driving safety [35]. In neurology, analyzing emotions and corresponding neural activities 

in response to specific stimuli can aid in diagnosing affective disorders such as post-traumatic stress 

disorder [36] and depression [37]. In the leisure and entertainment sector, particularly computer gaming, 

Researchers seek to identify players' emotional states to modify the degree of challenge, penalty, and 

encouragement in the game [38]. In Virtual Reality (VR) applications, in education, for instance, Emotional 

states have been shown to affect memory, and positive feelings have been found to improve spatial 

learning. Therefore, recognizing emotions during learning in a VR environment is crucial [39]. 

2.3 |EEG 

EEG signal is a random signal with discrete spatial characteristics and non-stationary behavior. It uniquely 

captures changes in scalp potential directly. Unlike other physiological signals, EEG provides a more 

genuine and reliable reflection of the human condition, particularly in a resting state. Due to continuous 

advancements in brain science and signal processing technology, EEG signals have become increasingly 

popular in the emotion recognition field. The EEG is a method for recording electrophysiological signals 

indicative of brain activity. It represents the summation of extracellular field potentials generated by 

postsynaptic potentials due to the activation of many neurons in the brain [40]. 

Although the process that generates the EEG signal is a complicated one, it nonetheless contains a lot of 

useful information. This signal is time-varying, spatially discrete, and non-stationary. Its waveform is 

typified by an absence of well-defined rules. It is therefore challenging to summarize its behavior. But from 

a frequency domain standpoint, the EEG output appears to be rhythmic, with distinct rhythms exhibiting 

distinct meanings and also called EEG signal frequency bands [40,41]. EEG frequency bands are distinct 
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ranges of frequencies within the EEG signal, each associated with specific mental or physiological states 

as described in Table 1. These frequency bands help researchers and clinicians understand different aspects 

of brain activity and their correlation with various mental states and neurological functions. 

2.3.1| EEG Signals Acquisitions 

One important step in the procedure is the placement of electrodes on the scalp to acquire EEG data. 

There are two primary classifications for this technique: invasive and non-invasive. Although invasive 

procedures are less noisy and have better accuracy, their usage is restricted because of safety concerns. 

Based on the tools utilized, non-invasive techniques can be further divided into two categories: dry and 

wet electrodes. To minimize resistance interference and improve signal stability, wet electrodes need a 

conductive medium to be placed between them and the scalp [42,43], as shown in Figure 4. However, wet 

electrode equipment has a shorter lifespan due to dielectric wear and can be uncomfortable for subjects 

due to the thick electrolytes applied to the scalp. Dry electrodes, while avoiding the need for a conductive 

medium and enhancing subject comfort, are less sensitive to electrode-scalp contact, leading to higher 

interference and weaker signal strength. This can complicate feature extraction in subsequent analysis. 

Both types have their pros and cons, so the choice should depend on the experiment's duration and the 

specific EEG signal requirements. 

Table 1. EEG signal frequency bands. 

 

 

 

 

 

 

 

Figure 4. EEG data acquisition using a non-invasive method [43] 

 

The equipment used to acquire EEG data is fitted with multiple electrodes designed to capture electrical 

signals from the scalp-brain interface. The number of electrodes used can vary depending on the device, 

including 16, 32, and 64 electrodes. These electrodes are positioned on the scalp in a strategic manner 

using accepted placement techniques such as the 10–5, 10–10, and 10–20 systems, where these values 

represent the original space between the skulls in percentage [44]. These methods assist in gathering 

EEG readings from various brain areas. The most popular electrode placement location for the 10–20 

system is illustrated in Figure 5. The proportion of the entire length of the skull that separates the distance 

between neighboring electrodes is represented by the numbers 10 and 20. 

Frequency band Frequency range Associated states 

Delta (δ) 1-4 HZ Deep inactivity, dysfunctional states 

Theta (θ) 4-7 HZ Drowsy 

Alpha (α) 7-15 HZ Idle, rest 

Beta (β) 15-30 HZ Mixed 

Gamma (γ) 30-300 HZ Activation 

Sigma (σ) 300 HZ-1 KHZ Spiking activity 
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Each electrode location is labeled with a letter indicating the lobe and a number indicating the hemisphere 

location. F stands for Frontal, T for Temporal, C for Central, O for Occipital, and P for Parietal. The letter 

z (zero) indicates a midline electrode placement. The right hemisphere is represented by an even number, 

while the left hemisphere is represented by odd values [44]. Figure 6 shows the brain lobes and Table 2 

shows the electrodes placement position of the 10/20 standard system on the different brain lobes. 

 

Figure 5. Standard 10/20 system of electrode placement method [44]. 

 

Figure 6. Brain lobes [44]  

Table 2. Electrodes placement position of 10/20 system on the different brain lobes [44] bands. 

 

 

 

 

 

 

 

Brain lobe Hemisphere Locations of electrodes 

F (frontal) 
Left Fp1, AF3, AF7, F1, F3, F5, F7, FC1, FC3, FC5 

Right Fp2, AF4, AF8, F2, F4, F6, FC2, FC4, FC6 

P (parietal) 
Left C1, C3, C5, CP1, CP5, P1, P3, P5 

Right C2, C4, CP2, CP4, CP6, P2, P4, P6 

T (temporal) 
Left FT7, T3, T5, TP7 

Right FT8, T4, T6, TP8 

O (occipital) 
Left O1, PO3, PO7 

Right O2, PO4, PO8 
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2.4 | EEG-based Emotion Recognition Tasks 

Different tasks are investigated in EEG emotion recognition tasks including subject-dependent and 

subject-independent tasks. Subject-dependent models tailor EEG emotion recognition to individual users 

by the same subject’s training and testing data. However, they lack generalizability across different subjects, 

making them impractical for large-scale applications. Conversely, subject-independent models are designed 

to generalize across diverse users by training on a dataset with EEG signals from various subjects. These 

models aim to develop robust classifiers that perform well on new subjects without needing personalized 

calibration. 

2.5 | EEG-based Emotion Recognition Approaches 

EEG emotion recognition task is addressed using a variety of deep learning and machine learning 

techniques. Pre-processing, feature extraction, and classification are the three stages that these methods 

typically include. To prepare the data for further analysis, the pre-processing step eliminates any noise and 

artifacts. Before using machine learning or deep learning models, the feature extraction step is essential. 

Because of the strong non-stationary characteristics of EEG data, the extraction of such features is a 

difficult procedure requiring specialized understanding. Recent studies used multivariate statistical analysis 

techniques to capture hand-crafted features in the frequency, time-frequency, and nonlinear domains that 

may represent EEG characteristics [45]. For example, some trials were constructed to preserve the 

channels' spatial information based on differential entropy (DE) from building a two-D mapping 

representation which was fed into a convolutional neural network (CNN) compared with other machine 

learning techniques such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) [46]. In 

addition, frequency bands energy and Entropy are extracted and fed into KNN and SVM classifiers in [13] 

and integrated with a discriminative graph regularized extreme learning machine (GELM) in [47]. 

Recently, there has been an increase in the use of deep learning-based methods for enhancing the efficiency 

and applicability of EEG applications. To understand more about the relationships between different brain 

areas, conditional entropy and power spectral density (PSD) as frequency and non-linear features with 

CNN are proposed in [48]. In [49], the authors merged CNN and sparse autoencoder with time-domain 

characteristics such as statistical features, sample entropy, and Pearson correlation coefficient (PCC). In 

[9], different statistical characteristics are extracted from EEG signal frequency bands and integrated with 

a deep belief-conditional random field framework. Moreover, a custom CNN model is presented to 

capture asymmetric, regional, and temporal features [50]. In [51], another deep model is utilized including 

long-short-term memory neural networks (LSTM) and graph convolutional neural networks (GCNN), 

where these models work with extracted DE features. To address the limits of EEG data and improve the 

performance of emotional recognition, more enhancements based on generative models and data 

augmentation approaches were explored [52]. To count the minimum number of samples needed for 

calibration without adjusting pre-trained classification methods for every user, a few-shot learning 

methodology is introduced [53]. 

In conclusion, while significant progress has been made in EEG emotion recognition, ongoing research is 

needed to overcome the challenges of data quality, feature extraction, model generalization, and 

computational complexity. Continued advancements in both machine learning and deep learning 

techniques hold promise for further improving the accuracy and applicability of EEG-based emotion 

recognition systems. In the next section, the latest research in subject-dependent and subject-independent 

tasks are discussed, and the limitations and research gaps are identified. 
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3 |EEG Emotion Recognition Literature Review    

Several models and features have been thoroughly studied and have contributed significantly to the field 

of EEG emotion recognition for subject-dependent and independent problems. EEG emotion 

recognition subject-dependent models are customized for each user and need to be trained and calibrated 

for every new subject. Despite its effectiveness, this method is constrained by its inability to be applied to 

various people. On the other hand, subject-independent models offer more adaptability and usefulness in 

real-world circumstances as they function over a wide range of subjects without requiring individual 

calibration. This section reviews the previous studies proposed to solve the EEG emotion recognition 

problem with subject-dependent and subject-independent tasks, highlighting the limitations and challenges 

in these models. 

3.1 | Subject-dependent Task Previous Studies 

In the rapidly expanding field of emotional computing, a great deal of research has been done on the 

categorization of emotions in subject-dependent tasks. Discrete wavelet transform (DWT) was applied to 

frontal channels in [13] to extract the energy and entropy of information from frequency bands after 

splitting the signal into 2-second long segments with 1-second overlapping. These features were then fed 

into SVM and KNN models. Using the DEAP dataset, this method produced accuracy values of 86.75% 

and 84.05% for two classes of V and A scales. The feature selection approach in [47] employed a minimal 

redundancy maximum relevance (MRMR) to extract six unique features, including PSD, DE, and 

asymmetry characteristics, from each window of the entire signal duration that lasted one second and 

included no overlap. After that, these characteristics were sent to discriminative GELM, which on the 

DEAP dataset produced four classes with an accuracy of 69.67%. The previous methods’ disadvantage is 

that they apply static signal segmentation, which aims to capture temporal data but loses long-term 

dependencies and creates redundancy through overlapping. The DWT method captures temporal and 

spectral information but is more sensitive to time-frequency changes and not robust to signal noise. To 

address the interactions between different brain areas, 0.5-second overlapping frames were used in [48] to 

extract conditional entropy and PSD, which passed to the CNN as a heat map image to 

capture complement features. These features were then transferred to an LSTM network, which on the 

DEAP dataset produced accuracy values of 71.09%, 72.58%, and 74.77 for two classes of V, A, and Liking 

(Li) scales. Additionally, the study in [49] merged statistical features, PCC enhanced with sparse 

autoencoder, and sample entropy with CNN model, while splitting the signal into 14 segments 

with 4s overlapping. On the DEAP dataset, this method produced accuracy values of 89.49% and 92.86% 

for two classes of V and A scales, respectively. Moreover, a custom CNN model is presented to capture 

regional, temporal, and asymmetric information, where the model splits the signal into 60 segments [50]. 

On the DEAP dataset, the model produced 96.65% and 97.11% accuracy for 2-classes of V and A scales. 

Moreover, for the 2 classes, LSTM and GCNN were utilized based on DE after splitting data into 10 

segments (6s wide), achieving 90.45% and 90.60% for V and A scales [51]. The prior models used static 

signal segmentation and the computationally difficult deep approach. 

Furthermore, the first and second-order differential was captured from 59 segments with 1s overlap. These 

features are enhanced with a stacked autoencoder and passed as input to a variety of classifiers, including 

RF, KNN, and decision trees. Using the DEAP dataset, the accuracy for the V scale was 62.63% across 

three classes [14]. With another 20 segments of the EEG signals, the PCC images were built and passed 

to the CNN model, where 78.22%, 74.92% on two classes, and 70.23%, 70.25% on three classes were 

achieved by utilizing the DEAP dataset [54]. More advanced investigations were presented based on CNN 

with a self-attention mechanism, where CNN was built based on DE [55]. On the DEAP dataset, this 

model produced 95.15%, 95.76%, 95.64%, and 95.86% for 2 classes with V, A, D, and Li scales. In [56], a 

novel dilated CNN model was presented to work with 2D and 3D representation features captured from 

channels’ spatial features and frequency bands, achieving 89.67% and 90.93% for 2 classes. To integrate 
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wavelet transforms and CNN with DEAP dataset, Continuous wavelet transform (CWT) is utilized to 

capture scalograms, achieving 83.43% and 84.2616% for 4 and 8 classes [57]. Similar to the DWT, the 

CWT extracts temporal and spectral information, but it is less robust to signal noise and more sensitive to 

variations in time frequency. 

Despite the wide range of research that has been done, the majority of emotion identification methods 

ignore separating the temporal and frequency dependence of the EEG data. Furthermore, several models 

that have been presented make use of brief seconds-long EEG signal segments. Specifically, a trial signal 

of duration (t) is split into (n) segments, each of which has a tiny (t/n) second long with an overlap or non-

overlap sliding window, and each segment is assigned the same label representing the entire experience. 

These segmentation strategies may be incorrect since the subjects' emotional states may be continuously 

changing, and the reported emotion is for the complete simulation. Furthermore, the feature 

representation that is currently in use is not robust enough against noise, deformations, or changes in time 

shift. To improve emotion classification models, it is crucial to find stable EEG features that capture both 

temporal and frequency information for the entire signal. This has led to a more thorough analysis and an 

accurate depiction of the EEG signal. 

3.2 | Subject-independent Task Previous Studies 

The subject-independent proposed methods aim to generate solutions for emotion recognition that may 

be applied more broadly and accessed by a broader range of people [58]. In the work in [59], spectral 

entropy values were extracted from each EEG channel's data and employed as input in the bidirectional 

long-short-term memory (BI-LSTM) model, achieving an accuracy of 76.93% on the GAMEEMO dataset 

with 10-fold cross-validation (CV). In [60], each channel's holographic representation is created using 

features gathered from 5 sub-bands. The obtained features are then fed into a CNN as the feature 

extraction layer, where they are combined with SVM to identify two V and A classes. They achieved an 

accuracy of 76.61% and 77.72% for V and A using the DEAP dataset and a 10-fold CV. In [15], the EEG 

signal is divided into ten 6 s segments. Each segment's Hjorth parameters and wavelet (entropy, energy) 

characteristics are computed and concatenated to each other, and then emotions are identified using SVM. 

They achieved 75.19% and 81.74% for V and A of the 2-classes classification task and 73.62% for the 4-

classes classification task with the LOSO validation technique on the DEAP dataset. This method's 

disadvantage is that it ignores temporal information in favor of frequency components. Its accuracy was 

less than 90%. They employed the computationally complex deep method. 

A feature extraction approach based on the domain adaptive symmetric and positive definite (SPD) matrix 

network has been developed [61]. This approach integrated prototype learning with the Riemannian metric 

to compute the sample point diffusion matrix. They achieved 67.99% and 76.57% accuracy for V and A 

on the DEAP dataset with the LOSO validation technique. The disadvantage of their method is that they 

ignore both frequency and temporal information. They capture geometric and structural information, 

including relationships between channels and features, but achieve less than 90% accuracy. In [62], a hand-

crafted framework based on a prime pattern network and tunable q-factor wavelet transform (TQWT) was 

introduced, integrated with SVM as a classification layer, achieving superior results over 99% on the DEAP 

and the GAMEEMO datasets. The usage of TQWT effectively captures frequency and temporal aspects 

but it is noise-sensitive, like other wavelet methods. Additionally, it overlooks inter-channel relationships 

by modeling each channel separately. 

Moreover, the work in [63] captured a modified version of DE, power spectral density, and Hjorth 

parameters from 4 sub-bands then fed the result into BI-LSTM to learn temporal and spatial features and 

finally apply a fully connected layer to classify emotions. These features were created after dividing the 

EEG signals into 1s segments with 50% overlap. They achieved 73.50% and 75% for V and A on the 

DEAP dataset. In [64], the DE was captured from each channel after splitting the signal into 3 s segments 

long to build a feature pyramid network as a feature extraction layer with the SVM classification layers with 
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an accuracy of over 80% on the DEAP dataset. Furthermore, in [65], the signal was split into 4 s segments 

with 2s overlaps to be used with the BI-LSTM network, achieving an accuracy of 61.39% and 63.35% on 

V and A on the DEAP dataset. The previous method’s disadvantage is that it applies static signal 

segmentation, which aims to capture temporal data but loses long-term dependencies and creates 

redundancy through overlapping. 

In [66], an approach to EEG-based emotion recognition was presented, which used multi-head attention 

mechanisms and graph convolution networks to model spatial brain activity. They achieved an accuracy 

of over 69% on the DEAP dataset. Their technique resulted in a lower accuracy rate and used a 

computationally complex deep method. A transfer learning framework based on the Google-Net network 

was presented in [67], where EEG signals were converted to EEG images using CWT, which is more 

sensitive to time-frequency changes and not robust to signal noise. They achieved an accuracy of 93.31% 

on the GAMEEMO with a 10-fold CV. In [68], the EEG waves were decomposed by Empirical Mode 

Decomposition (EMD) and other statistical features and then fed into Bi-LSTM, achieving an accuracy of 

90.33% for 10-fold CV. The EMD can capture time and frequency information but is more sensitive to 

time-frequency changes.  

In [69], an alternative method was proposed in which the EEG signal was separated into segments of 

1s size, and the root mean square of each window was computed for 5 sub-bands then the data was input 

into a projection dictionary pair learning PDPL model for classification, achieving 49.01% accuracy on the 

GAMEMEO dataset. The disadvantage of their method is the usage of static signal segmentation and their 

accuracy is less than 90%. 

In [70], Multivariate Fast Iterative Filtering (MFIF) was applied to the EEG signal to decompose it to a 

simpler form and Hjorth parameters with nine entropy features were extracted from each 2s segment with 

KNN as a classification layer. They achieved an accuracy of 97.857% with the GAMEMEO dataset with 

a LOSO CV and 98.45% with a 10-fold CV. Furthermore, a framework for the temporal-spectral 

recognition of emotions is suggested, in which high-level spectral characteristics were extracted using the 

Manifold-Net network and then fed into the BI-LSTM network for classification [71]. They achieved 

71.88% and 69.38% accuracy for V and A on the DEAP dataset. The MFIF captured temporal and 

frequency aspects well but struggled with noise, like other wavelet methods. In [72], an information 

potential index was applied - after decomposing the EEG signal into five frequency bands - between EEG 

channels to find the spatial pattern. This study employed a KNN classifier to categorize emotions into 

four classes on the DEAP dataset and achieved results of 94.75% with the LOSO validation technique. 

They capture frequency and spatial information but ignore temporal information. 

Despite the variety of existing studies, many existing methods in EEG signal analysis concentrate either 

on temporal, or spectral aspects, often neglecting to capture both comprehensively. Integrated approaches 

provide deeper insights into the signal characteristics. A few models comprehensively integrate spatial 

aspects alongside temporal and spectral dimensions. Moreover, those models fall short in accuracy and 

rely on computationally intensive deep-learning architectures, particularly with noise-sensitive and non-

invariant methods. Moreover, approaches leveraging deep learning to enhance signal representation face 

limitations due to the high computational demands of such models. In addition, current models often limit 

EEG signal classification to a narrow range of emotional states or datasets, raising questions about their 

robustness and adaptability to a broader spectrum of emotions. 

3.3 | Limitations and Challenges Summary 

In conclusion, EEG-based emotion categorization techniques have evolved significantly, yet they 

encounter specific limitations and challenges: 

- Many existing methods in EEG signal analysis concentrate either on temporal or spectral aspects, 

often neglecting to capture both comprehensively. Temporal analysis focuses on signal changes over 
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time, while spectral analysis looks at power distribution across various frequency bands. Integrated 

approaches provide deeper insights into the signal characteristics.  

- However, even when both dimensions are considered, the techniques may fall short in accuracy, 

particularly with noise-sensitive and non-invariant methods. Moreover, approaches leveraging deep 

learning to enhance signal representation face limitations due to the high computational demands of 

such models. 

- A few models comprehensively integrate spatial aspects alongside temporal and spectral dimensions. 

Moreover, those models fall short in accuracy and rely on computationally intensive deep-learning 

architectures. 

- Traditional static segmentation, with or without overlap, captured temporal data but lost long-term 

dependencies, while overlapping led to redundant information. 

- Current models often limit EEG signal classification to a narrow range of emotional states or datasets, 

raising questions about their robustness and adaptability to a broader spectrum of emotions. 

- The dataset limitation challenges. 

Therefore, as a future direction, this paper suggests the following points: 

- Explore other effective feature extraction techniques that are stable enough against deformation noise 

and variations due to the complexity of the EEG signals. In addition, it possesses strong discriminative 

ability, is computationally efficient, and contributes additional, distinct information within the selected 

subset of extracted features. 

- Build the model in a way that captures different information aspects including temporal, spectral, and 

spatial information while working on the whole signal rather than applying static segmentation. This 

can lead to a more comprehensive analysis and a more accurate representation of EEG signals which 

in turn enhance emotion classification models. 

- Regarding the dataset limitation problem, the development of novel data augmentation techniques 

customized to the properties of EEG signals may greatly enhance the efficacy of emotion recognition 

models. 

- Investigating new deep learning architectures is crucial to enhancing EEG data-based emotion 

recognition performance. 

4 |Conclusion    

This study presents a systematic review and analysis of the most significant machine and deep learning 

techniques for the EEG-based emotion recognition task in two directions including subject-dependent 

and subject-independent tasks. In addition, it outlines limitations and challenges faced by the current 

models and finally suggests future directions. 

Despite the variety of existing studies, many existing methods in EEG signal analysis concentrate either 

on temporal, or spectral aspects, often neglecting to capture both comprehensively. Integrated approaches 

provide deeper insights into the signal characteristics. A few models comprehensively integrate spatial 

aspects alongside temporal and spectral dimensions. Moreover, those models fall short in accuracy and 

rely on computationally intensive deep-learning architectures, particularly with noise-sensitive and non-

invariant methods. In addition to the traditional static segmentation, with or without overlap, which 

captures temporal data but suffers from losing long-term dependencies, overlapping leads to redundant 

information. 

Future work should focus on exploring new effective feature extraction techniques that are stable enough 

against deformation noise, and variations due to the complexity of the EEG signals. In addition to 
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possessing strong discriminative ability, be computationally efficient, and contribute additional, distinct 

information within the selected subset of extracted features. In addition to extracting different aspects 

from the EEG including temporal, spectral, and spatial information, explore new deep learning 

architectures, and data augmentation techniques to enhance EEG data-based emotion recognition 

performance. 
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